

Quick Reference

AP Computer Science A and AB

Content of Appendixes

Appendix A .Class Summary and Index
Appendix B .Testable API
Appendix C . Testable Code for APCS A/AB
Appendix D .Testable Code for APCS AB Only
Appendix E .Quick Reference A/AB
Appendix F .Quick Reference AB Only

Appendix A Class Summary and Index

A - 1

Class Summary and Index
Class*

Package

Description Page Tested in AP
CS Exam?

AbstractGrid

info.gridworld.grid

AbstractGrid contains the
methods that are common to
grid implementations.

D - 1, D - 2 Implementation
(AB only)

Actor

info.gridworld.actor

An Actor is an entity that can
act. It has a color and direction. B - 3 API only

ActorWorld

info.gridworld.actor

An ActorWorld is occupied
by actors.

Student Manual
Part 3 Not tested

BoundedGrid

info.gridworld.grid

A BoundedGrid is a
rectangular grid with a finite
number of rows and columns.

D - 3, D � 4

Implementation
(AB only)

BoxBug

(none)
A BoxBug traces out a square
�box� of a given size. C - 3 Implementation

BoxBugRunner

(none)
This class runs a world that
contains box bugs.

Student Manual
Part 2 Not tested

Bug

info.gridworld.actor

A Bug is an actor that can
move and turn. It drops flowers
as it moves.

C - 1, C - 2 Implementation

BugRunner

(none)

This class runs a world that
contains a bug and a rock,
added at random locations.

In the projects/
firstProject

folder of the code
distribution

Not tested

ChameleonCritter

(none)

A ChameleonCritter takes
on the color of neighboring
actors as it moves through the
grid.

C - 6 Implementation

ChameleonRunner

(none)
This class runs a world that
contains chameleon critters.

In the projects/
critters folder

of the code
distribution

Not tested

*Bold formatting of a class name indicates that students are responsible for the use of that class on the AP Computer
Science Exams at the level indicated in this chart.

Appendix A Class Summary and Index

A - 2

Class*

Package
Description Page Tested in AP

CS Exam?

CrabCritter

(none)

A CrabCritter looks at a
limited set of neighbors when it
eats and moves.

Student Manual
Part 4 Not tested

CrabRunner

(none)
This class runs a world that
contains crab critters.

In the projects/
critters folder

of the code
distribution

Not tested

Critter

info.gridworld.actor

A Critter is an actor that
moves through its world,
processing other actors in some
way and then picking a new
location.

C - 4, C � 5,
C - 6 Implementation

CritterRunner

(none)
This class runs a world that
contains critters.

In the projects/
critters folder

of the code
distribution

Not tested

Flower

info.gridworld.actor

A Flower is an actor that
darkens over time. Some actors
drop flowers as they move.

B - 4 API only

Grid

info.gridworld.grid

Grid provides an interface for
a two-dimensional, grid-like
environment containing
arbitrary objects.

B - 2 API only

Location

info.gridworld.grid

A Location object represents
the row and column of a
location in a two-dimensional
grid.

B - 1 API only

Rock

info.gridworld.actor

A Rock is an actor that does
nothing. It is commonly used to
block other actors from
moving.

B - 4 API only

UnboundedGrid

info.gridworld.grid

An UnboundedGrid is a
rectangular grid with an
unbounded number of rows and
columns.

D - 5, D - 6 Implementation
(AB only)

World

info.gridworld.world

A World is the mediator
between a grid and the
GridWorld GUI.

In the API
documentation of

the code
distribution

Not tested

*Bold formatting of a class name indicates that students are responsible for the use of that class on the AP Computer
Science Exams at the level indicated in this chart.

Appendix B Testable API

 B - 1

Appendix B � Testable API

info.gridworld.grid.Location class

public Location(int r, int c)
constructs a location with row r and column c

public int getRow()
returns the row of this location

public int getCol()
returns the column of this location

public Location getAdjacentLocation(int direction)
returns the adjacent location in the compass direction that is closest to direction

public int getDirectionToward(Location target)
returns the closest compass direction from this location toward target

public boolean equals(Object other)
returns true if other is a Location object with the same row and column values as this location, and
false otherwise

public int hashCode()
returns a hash code for this location

public int compareTo(Object otherObject)
returns a negative integer if this location is less than other, zero if the two locations are equal, or a positive
integer if this location is greater than other. Locations are ordered in row-major order.
Precondition: other is a Location object.

public String toString()
returns a string with the row and column of this location, in the format (row, col)

Compass directions:
public static final int NORTH = 0;
public static final int EAST = 90;
public static final int SOUTH = 180;
public static final int WEST = 270;
public static final int NORTHEAST = 45;
public static final int SOUTHEAST = 135;
public static final int SOUTHWEST = 225;
public static final int NORTHWEST = 315;

Turn angles:
public static final int LEFT = -90;
public static final int RIGHT = 90;
public static final int HALF_LEFT = -45;
public static final int HALF_RIGHT = 45;
public static final int FULL_CIRCLE = 360;
public static final int HALF_CIRCLE = 180;
public static final int AHEAD = 0;

Appendix B Testable API

 B - 2

info.gridworld.grid.Grid<E> interface

int getNumRows()
returns the number of rows, or -1 if this grid is unbounded

int getNumCols()
returns the number of columns, or -1 if this grid is unbounded

boolean isValid(Location loc)
returns true if loc is valid in this grid, false otherwise
Precondition: loc is not null

E put(Location loc, E obj)
puts obj at location loc in this grid and returns the object previously at that location (or null if the
location was previously unoccupied).
Precondition: (1) loc is valid in this grid (2) obj is not null

E remove(Location loc)
removes the object at location loc and returns it (or null if the location is unoccupied)
Precondition: loc is valid in this grid

E get(Location loc)
returns the object at location loc (or null if the location is unoccupied)
Precondition: loc is valid in this grid

ArrayList<Location> getOccupiedLocations()
returns all occupied locations in this grid

ArrayList<Location> getValidAdjacentLocations(Location loc)
returns all valid locations adjacent to loc in this grid
Precondition: loc is valid in this grid

ArrayList<Location> getEmptyAdjacentLocations(Location loc)
returns all valid empty locations adjacent to loc in this grid
Precondition: loc is valid in this grid

ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
returns all valid occupied locations adjacent to loc in this grid
Precondition: loc is valid in this grid

ArrayList<E> getNeighbors(Location loc)
returns all objects in the occupied locations adjacent to loc in this grid
Precondition: loc is valid in this grid

Appendix B Testable API

 B - 3

info.gridworld.actor.Actor class

public Actor()
constructs a blue actor that is facing north

public Color getColor()
returns the color of this actor

public void setColor(Color newColor)
sets the color of this actor to newColor

public int getDirection()
returns the direction of this actor, an angle between 0 and 359 degrees

public void setDirection(int newDirection)
sets the direction of this actor to the angle between 0 and 359 degrees that is equivalent to newDirection

public Grid<Actor> getGrid()
returns the grid of this actor, or null if this actor is not contained in a grid

public Location getLocation()
returns the location of this actor.
Precondition: this actor is contained in a grid

public void putSelfInGrid(Grid<Actor> gr, Location loc)
puts this actor into the location loc of the grid gr. If there is another actor at loc, it is removed.
Precondition: (1) This actor is not contained in a grid (2) loc is valid in gr

public void removeSelfFromGrid()
removes this actor from its grid.
Precondition: this actor is contained in a grid

public void moveTo(Location newLocation)
moves this actor to newLocation. If there is another actor at newLocation, it is removed.
Precondition: (1) This actor is contained in a grid (2) newLocation is valid in the grid of this actor

public void act()
reverses the direction of this actor. Override this method in subclasses of Actor to define types of actors with
different behavior

public String toString()
returns a string with the location, direction, and color of this actor

Appendix B Testable API

 B - 4

info.gridworld.actor.Rock class

public Rock()
constructs a black rock

public Rock(Color rockColor)
constructs a rock with color rockColor

public void act()
 overrides the act method in the Actor class to do nothing

info.gridworld.actor.Flower class

public Flower()
constructs a pink flower

public Flower(Color initialColor)
constructs a flower with initial color initialColor

public void act()
causes the color of this flower to darken

Appendix C Testable Code for APCS A/AB

 C - 1

Appendix C � Testable Code for APCS A/AB

Bug.java

package info.gridworld.actor;

import info.gridworld.grid.Grid;
import info.gridworld.grid.Location;

import java.awt.Color;

/**
 * A Bug is an actor that can move and turn. It drops flowers as
 * it moves.
 * The implementation of this class is testable on the AP CS A and AB Exams.
 */
public class Bug extends Actor
{
 /**
 * Constructs a red bug.
 */
 public Bug()
 {
 setColor(Color.RED);
 }

 /**
 * Constructs a bug of a given color.
 * @param bugColor the color for this bug
 */
 public Bug(Color bugColor)
 {
 setColor(bugColor);
 }

 public void act()
 {
 if (canMove())
 move();
 else
 turn();
 }

 /**
 * Turns the bug 45 degrees to the right without changing its location.
 */
 public void turn()
 {
 setDirection(getDirection() + Location.HALF_RIGHT);
 }

Appendix C Testable Code for APCS A/AB

 C - 2

 /**
 * Moves the bug forward, putting a flower into the location it previously
 * occupied.
 */
 public void move()
 {
 Grid<Actor> gr = getGrid();
 if (gr == null)
 return;
 Location loc = getLocation();
 Location next = loc.getAdjacentLocation(getDirection());
 if (gr.isValid(next))
 moveTo(next);
 else
 removeSelfFromGrid();
 Flower flower = new Flower(getColor());
 flower.putSelfInGrid(gr, loc);
 }

 /**
 * Tests whether this bug can move forward into a location that is empty or
 * contains a flower.
 * @return true if this bug can move.
 */
 public boolean canMove()
 {
 Grid<Actor> gr = getGrid();
 if (gr == null)
 return false;
 Location loc = getLocation();
 Location next = loc.getAdjacentLocation(getDirection());
 if (!gr.isValid(next))
 return false;
 Actor neighbor = gr.get(next);
 return (neighbor == null) || (neighbor instanceof Flower);
 // ok to move into empty location or onto flower
 // not ok to move onto any other actor
 }
}

Appendix C Testable Code for APCS A/AB

 C - 3

BoxBug.java

package info.gridworld.actor;

import info.gridworld.grid.Grid;
import info.gridworld.grid.Location;

import java.awt.Color;

/**
 * A BoxBug traces out a square �box� of a given size.
 * The implementation of this class is testable on the AP CS A and AB Exams.
 */
public class BoxBug extends Bug
{
 private int steps;
 private int sideLength;

 /**
 * Constructs a box bug that traces a square of a given side length
 * @param length the side length
 */
 public BoxBug(int length)
 {
 steps = 0;
 sideLength = length;
 }

 public void act()
 {
 if (steps < sideLength && canMove())
 {
 move();
 steps++;
 }
 else
 {
 turn();
 turn();
 steps = 0;
 }
 }
}

Appendix C Testable Code for APCS A/AB

 C - 4

Critter.java

package info.gridworld.actor;

import info.gridworld.grid.Location;
import java.util.ArrayList;

/**
 * A Critter is an actor that moves through its world, processing
 * other actors in some way and then picking a new location.
 * The implementation of this class is testable on the AP CS A and AB Exams.
 */
public class Critter extends Actor
{
 /**
 * A critter acts by getting a list of its neighbors, processing them,
 * getting locations to move to, selecting one of them, and moving to the
 * selected location.
 */
 public void act()
 {
 if (getGrid() == null)
 return;
 ArrayList<Actor> actors = getActors();
 processActors(actors);
 ArrayList<Location> moveLocs = getMoveLocations();
 Location loc = selectMoveLocation(moveLocs);
 makeMove(loc);
 }

 /**
 * Gets the actors for processing. The actors must be contained in the same
 * grid as this critter. Implemented to return the actors that occupy
 * neighboring grid locations. Override this method in subclasses to look
 * elsewhere for actors to process.
 * @return a list of actors that are neighbors of this critter
 */
 public ArrayList<Actor> getActors()
 {
 return getGrid().getNeighbors(getLocation());
 }

Appendix C Testable Code for APCS A/AB

 C - 5

 /**
 * Processes the actors. Implemented to �eat� (i.e. remove) all actors that
 * are not rocks or critters. Override this method in subclasses to process
 * neighbors in a different way.
 * Precondition: All objects in actors are contained in the
 * same grid as this critter.
 * @param actors the actors to be processed
 */
 public void processActors(ArrayList<Actor> actors)
 {
 for (Actor a : actors)
 {
 if (!(a instanceof Rock) && !(a instanceof Critter))
 a.removeSelfFromGrid();
 }
 }

 /**
 * Gets the possible locations for the next move. Implemented to return the
 * empty neighboring locations. Override this method in subclasses to look
 * elsewhere for move locations.
 * Postcondition: The locations must be valid in the grid of this critter.
 * @return a list of possible locations for the next move
 */
 public ArrayList<Location> getMoveLocations()
 {
 return getGrid().getEmptyAdjacentLocations(getLocation());
 }

 /**
 * Selects the location for the next move. Implemented to randomly pick one
 * of the possible locations, or to return the current location if locs has
 * size 0. Override this method in subclasses that have another mechanism
 * for selecting the next move location.
 * Precondition: All locations in locs are valid in the grid
 * of this critter
 * @param locs the possible locations for the next move
 * @return the location that was selected for the next move.
 */
 public Location selectMoveLocation(ArrayList<Location> locs)
 {
 int n = locs.size();
 if (n == 0)
 return getLocation();
 int r = (int) (Math.random() * n);
 return locs.get(r);
 }

Appendix C Testable Code for APCS A/AB

 C - 6

 /**
 * Moves this critter to the given location. Implemented to call moveTo.
 * Override this method in subclasses that want to carry out other actions
 * for moving (for Example, turning or leaving traces).
 * Precondition: loc is valid in the grid of this critter
 * @param loc the location to move to (must be valid)
 */
 public void makeMove(Location loc)
 {
 moveTo(loc);
 }
}

ChameleonCritter.java

import info.gridworld.actor.Actor;
import info.gridworld.actor.Critter;
import info.gridworld.grid.Location;

import java.util.ArrayList;

/**
 * A ChameleonCritter takes on the color of neighboring actors as
 * it moves through the grid.
 * The implementation of this class is testable on the AP CS A and AB Exams.
 */
public class ChameleonCritter extends Critter
{
 /**
 * Randomly selects a neighbor and changes this critter's color to be the
 * same as that neighbor's. If there are no neighbors, no action is taken.
 */
 public void processActors(ArrayList<Actor> actors)
 {
 int n = actors.size();
 if (n == 0)
 return;
 int r = (int) (Math.random() * n);

 Actor other = actors.get(r);
 setColor(other.getColor());
 }

 /**
 * Turns towards the new location as it moves.
 */
 public void makeMove(Location loc)
 {
 setDirection(getLocation().getDirectionToward(loc));
 super.makeMove(loc);
 }
}

 Appendix D Testable Code for APCS AB

 D -

1

Appendix D � Testable Code for APCS AB

AbstractGrid.java

package info.gridworld.grid;

import java.util.ArrayList;

/**
 * AbstractGrid contains the methods that are common to grid
 * implementations.
 * The implementation of this class is testable on the AP CS AB Exam.
 */
public abstract class AbstractGrid<E> implements Grid<E>
{

 public ArrayList<E> getNeighbors(Location loc)
 {
 ArrayList<E> neighbors = new ArrayList<E>();
 for (Location neighborLoc : getOccupiedAdjacentLocations(loc))
 neighbors.add(get(neighborLoc));
 return neighbors;
 }

 public ArrayList<Location> getValidAdjacentLocations(Location loc)
 {
 ArrayList<Location> locs = new ArrayList<Location>();

 int d = Location.NORTH;
 for (int i = 0; i < Location.FULL_CIRCLE / Location.HALF_RIGHT; i++)
 {
 Location neighborLoc = loc.getAdjacentLocation(d);
 if (isValid(neighborLoc))
 locs.add(neighborLoc);
 d = d + Location.HALF_RIGHT;
 }
 return locs;
 }

 public ArrayList<Location> getEmptyAdjacentLocations(Location loc)
 {
 ArrayList<Location> locs = new ArrayList<Location>();
 for (Location neighborLoc : getValidAdjacentLocations(loc))
 {
 if (get(neighborLoc) == null)
 locs.add(neighborLoc);
 }
 return locs;
 }

 Appendix D Testable Code for APCS AB

 D -

2

 public ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
 {
 ArrayList<Location> locs = new ArrayList<Location>();
 for (Location neighborLoc : getValidAdjacentLocations(loc))
 {
 if (get(neighborLoc) != null)
 locs.add(neighborLoc);
 }
 return locs;
 }

 /**
 * Creates a string that describes this grid.
 * @return a string with descriptions of all objects in this grid (not
 * necessarily in any particular order), in the format {loc=obj, loc=obj, ...}
 */
 public String toString()
 {
 String s = "{";
 for (Location loc : getOccupiedLocations())
 {
 if (s.length() > 1)
 s += ", ";
 s += loc + "=" + get(loc);
 }
 return s + "}";
 }
}

 Appendix D Testable Code for APCS AB

 D -

3

BoundedGrid.java

package info.gridworld.grid;

import java.util.ArrayList;

/**
 * A BoundedGrid is a rectangular grid with a finite number of
 * rows and columns.
 * The implementation of this class is testable on the AP CS AB Exam.
 */
public class BoundedGrid<E> extends AbstractGrid<E>
{
 private Object[][] occupantArray; // the array storing the grid elements

 /**
 * Constructs an empty bounded grid with the given dimensions.
 * (Precondition: rows > 0 and cols > 0.)
 * @param rows number of rows in BoundedGrid
 * @param cols number of columns in BoundedGrid
 */

 public BoundedGrid(int rows, int cols)
 {
 if (rows <= 0)
 throw new IllegalArgumentException("rows <= 0");
 if (cols <= 0)
 throw new IllegalArgumentException("cols <= 0");
 occupantArray = new Object[rows][cols];
 }

 public int getNumRows()
 {
 return occupantArray.length;
 }

 public int getNumCols()
 {
 // Note: according to the constructor precondition, numRows() > 0, so
 // theGrid[0] is non-null.
 return occupantArray[0].length;
 }

 public boolean isValid(Location loc)
 {
 return 0 <= loc.getRow() && loc.getRow() < getNumRows() &&
 0 <= loc.getCol() && loc.getCol() < getNumCols();
 }

 Appendix D Testable Code for APCS AB

 D -

4

 public ArrayList<Location> getOccupiedLocations()
 {
 ArrayList<Location> theLocations = new ArrayList<Location>();

 // Look at all grid locations.
 for (int r = 0; r < getNumRows(); r++)
 {
 for (int c = 0; c < getNumCols(); c++)
 {
 // If there's an object at this location, put it in the array.
 Location loc = new Location(r, c);
 if (get(loc) != null)
 theLocations.add(loc);
 }
 }

 return theLocations;
 }

 public E get(Location loc)
 {
 if (!isValid(loc))
 throw new IllegalArgumentException("Location " + loc + " is not valid");
 return (E) occupantArray[loc.getRow()][loc.getCol()]; // unavoidable warning
 }

 public E put(Location loc, E obj)
 {
 if (!isValid(loc))
 throw new IllegalArgumentException("Location " + loc+ " is not valid");
 if (obj == null)
 throw new NullPointerException("obj == null");

 // Add the object to the grid.
 E oldOccupant = get(loc);
 occupantArray[loc.getRow()][loc.getCol()] = obj;
 return oldOccupant;
 }

 public E remove(Location loc)
 {
 if (!isValid(loc))
 throw new IllegalArgumentException("Location " + loc + " is not valid");

 // Remove the object from the grid.
 occupantArray[loc.getRow()][loc.getCol()] = null;
 return r;
 }
}

 Appendix D Testable Code for APCS AB

 D -

5

UnboundedGrid.java

package info.gridworld.grid;

import java.util.ArrayList;

import java.util.*;

/**
 * An UnboundedGrid is a rectangular grid with an unbounded number of rows and
 * columns.
 * The implementation of this class is testable on the AP CS AB Exam.
 */
public class UnboundedGrid<E> extends AbstractGrid<E>
{
 private Map<Location, E> occupantMap;

 /**
 * Constructs an empty unbounded grid.
 */
 public UnboundedGrid()
 {
 occupantMap = new HashMap<Location, E>();
 }

 public int getNumRows()
 {
 return -1;
 }

 public int getNumCols()
 {
 return -1;
 }

 public boolean isValid(Location loc)
 {
 return true;
 }

 public ArrayList<Location> getOccupiedLocations()
 {
 ArrayList<Location> a = new ArrayList<Location>();
 for (Location loc : occupantMap.keySet())
 a.add(loc);
 return a;
 }

 public E get(Location loc)
 {
 if (loc == null)
 throw new NullPointerException("loc == null");
 return occupantMap.get(loc);
 }

 Appendix D Testable Code for APCS AB

 D -

6

 public E put(Location loc, E obj)
 {
 if (loc == null)
 throw new NullPointerException("loc == null");
 if (obj == null)
 throw new NullPointerException("obj == null");
 return occupantMap.put(loc, obj);
 }

 public E remove(Location loc)
 {
 if (loc == null)
 throw new NullPointerException("loc == null");
 return occupantMap.remove(loc);
 }
}

Appendix E Quick Reference A/AB

E - 1

Quick Reference A/AB

Location Class (implements Comparable)

public Location(int r, int c)
public int getRow()
public int getCol()
public Location getAdjacentLocation(int direction)
public int getDirectionToward(Location target)
public boolean equals(Object other)
public int hashCode()
public int compareTo(Object otherObject)
public String toString()

NORTH, EAST, SOUTH, WEST, NORTHEAST, SOUTHEAST, NORTHWEST, SOUTHWEST
LEFT, RIGHT, HALF_LEFT, HALF_RIGHT, FULL_CIRCLE, HALF_CIRCLE, AHEAD

Grid<E> Interface

int getNumRows()
int getNumCols()
boolean isValid(Location loc)
E put(Location loc, E obj)
E remove(Location loc)
E get(Location loc)
ArrayList<Location> getOccupiedLocations()
ArrayList<Location> getValidAdjacentLocations(Location loc)
ArrayList<Location> getEmptyAdjacentLocations(Location loc)
ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
ArrayList<E> getNeighbors(Location loc)

Actor Class

public Actor()
public Color getColor()
public void setColor(Color newColor)
public int getDirection()
public void setDirection(int newDirection)
public Grid<Actor> getGrid()
public Location getLocation()
public void putSelfInGrid(Grid<Actor> gr, Location loc)
public void removeSelfFromGrid()
public void moveTo(Location newLocation)
public void act()
public String toString()

Appendix E Quick Reference A/AB

E - 2

Rock Class (extends Actor)

public Rock()
public Rock(Color rockColor)
public void act()

Flower Class (extends Actor)

public Flower()
public Flower(Color initialColor)
public void act()

Bug Class (extends Actor)

public Bug()
public Bug(Color bugColor)
public void act()
public void turn()
public void move()
public boolean canMove()

BoxBug Class (extends Bug)

public BoxBug(int n)
public void act()

Critter Class (extends Actor)

public void act()
public ArrayList<Actor> getActors()
public void processActors(ArrayList<Actor> actors)
public ArrayList<Location> getMoveLocations()
public Location selectMoveLocation(ArrayList<Location> locs)
public void makeMove(Location loc)

ChameleonCritter Class (extends Critter)

public void processActors(ArrayList<Actor> actors)
public void makeMove(Location loc)

Appendix F Quick Reference AB

F - 1

Quick Reference AB Only

AbstractGrid Class (implements Grid)

public ArrayList<E> getNeighbors(Location loc)
public ArrayList<Location> getValidAdjacentLocations(Location loc)
public ArrayList<Location> getEmptyAdjacentLocations(Location loc)
public ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
public String toString()

BoundedGrid Class (extends AbstractGrid)

public BoundedGrid(int rows, int cols) / public UnboundedGrid()
public int getNumRows()
public int getNumCols()
public boolean isValid(Location loc)
public ArrayList<Location> getOccupiedLocations()
public E get(Location loc)
public E put(Location loc, E obj)
public E remove(Location loc)

UnboundedGrid Class (extends AbstractGrid)

public UnboundedGrid()
public int getNumRows()
public int getNumCols()
public boolean isValid(Location loc)
public ArrayList<Location> getOccupiedLocations()
public E get(Location loc)
public E put(Location loc, E obj)
public E remove(Location loc)

