
GridWorld Case Study
Part 5: Grid Data Structures (CS AB only)

The AbstractGrid Class

Two concrete implementations of the Grid interface are provided, one for a bounded grid
that has a fixed number of rows and columns, and a second for an unbounded grid, for
which any row and column values are valid. Rather than have repeated code in two
classes, the AbstractGrid class defines five methods of the Grid interface that are
common to both implementations.

public ArrayList<E> getNeighbors(Location loc)
public ArrayList<Location> getValidAdjacentLocations(Location loc)
public ArrayList<Location> getEmptyAdjacentLocations(Location loc)
public ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
public String toString()

The code for these methods uses other methods specified in the interface. Here is the
definition of the getNeighbors method. Note that the same method works for bounded
and unbounded grids.

public ArrayList<E> getNeighbors(Location loc)
{
 ArrayList<E> neighbors = new ArrayList<E>();
 for (Location neighborLoc : getOccupiedAdjacentLocations(loc))
 neighbors.add(get(neighborLoc));
 return neighbors;
}

The AbstractGrid class is a superclass of the BoundedGrid and UnboundedGrid classes.
Since AbstractGrid does not define all methods specified by the Grid interface, it is an
abstract class. The concrete BoundedGrid and UnboundedGrid classes define the
methods of the Grid interface that are not defined in AbstractGrid. This design is
illustrated in the following figure.

 2

Do You Know? Set 10

The source code for the AbstractGrid class is in Appendix D.

1. Where is the isValid method specified? Which classes provide an
implementation of this method?

2. Which AbstractGrid methods call the isValid method? Why don�t the other
methods need to call it?

3. Which methods of the Grid interface are called in the getNeighbors method?
Which classes provide implementations of these methods?

4. Why must the get method, which returns an object of type E, be used in the
getEmptyAdjacentLocations method when this method returns locations, not
objects of type E?

5. What would be the effect of replacing the constant Location.HALF_RIGHT with
Location.RIGHT in the two places where it occurs in the
getValidAdjacentLocations method?

The BoundedGrid Class

A bounded grid has a fixed number of rows and columns. You can access only locations
that are within the bounds of the grid. If you try to access an invalid location, a run-time
exception will be thrown.

 3

The BoundedGrid<E> class stores grid occupants in a two-dimensional array.

private Object[][] occupantArray;

Note that occupantArray is declared to hold references of type Object rather than the
generic type E. (In the Java language, it is impossible to declare arrays of generic types.)
Nevertheless, all elements of occupantArray must belong to the type E. Only the put
method adds elements to the array, and it requires elements of type E.

Do You Know? Set 11

The source code for the BoundedGrid class is in Appendix D.

1. What ensures that a grid has at least one valid location?
2. How is the number of columns in the grid determined by the getNumCols

method? What assumption about the grid makes this possible?
3. What are the requirements for a Location to be valid in a BoundedGrid?

In the next four questions, let r = number of rows, c = number of columns,
and n = number of occupied locations.

4. What type is returned by the getOccupiedLocations method? What is the time
complexity (Big-Oh) for this method?

5. What type is returned by the get method? What parameter is needed? What is the
time complexity (Big-Oh) for this method?

6. What conditions may cause an exception to be thrown by the put method? What
is the time complexity (Big-Oh) for this method?

7. What type is returned by the remove method? What happens when an attempt is
made to remove an item from an empty location? What is the time complexity
(Big-Oh) for this method?

8. Based on the answers to questions 4, 5, 6, and 7, would you consider this an
efficient implementation? Justify your answer.

The UnboundedGrid Class

In an unbounded grid, any location is valid, even when the row or column is negative or
very large. Since there is no bound on the row or column of a location in this grid, the
UnboundedGrid<E> class does not use a fixed size two-dimensional array. Instead, it
stores occupants in a Map<Location, E>. The key type of the map is Location and the
value type is E, the type of the grid occupants.

 4

The numRows and numCols methods both return -1 to indicate that an unbounded grid
does not have any specific number of rows or columns. The isValid method always
returns true. The get, put, and remove methods simply invoke the corresponding Map
methods. The getOccupiedLocations method returns the same locations that are
contained in the key set for the map.

Do You Know? Set 12

The source code for the UnboundedGrid class is in Appendix D.

1. Which method must the Location class implement so that an instance of HashMap
can be used for the map? What would be required of the Location class if a
TreeMap were used instead? Does Location satisfy these requirements?

2. Why are the checks for null included in the get, put, and remove methods? Why
are no such checks included in the corresponding methods for the BoundedGrid?

3. What is the average time complexity (Big-Oh) for the three methods: get, put,
and remove? What would it be if a TreeMap were used instead of a HashMap?

4. How would the behavior of this class differ, aside from time complexity, if a
TreeMap were used instead of a HashMap?

5. Could a map implementation be used for a bounded grid? What advantage, if any,
would the two-dimensional array implementation that is used by the BoundedGrid
class have over a map implementation?

Exercises

1. Suppose that a program requires a very large bounded grid that contains very few
objects and that the program frequently calls the getOccupiedLocation method
(as, for example, ActorWorld). Create a class SparseBoundedGrid that uses a
�sparse array� implementation. Your solution need not be a generic class; you
may simply store occupants of type Object.

The �sparse array� is an array list of linked lists. Each linked list entry holds both
a grid occupant and a column index. Each entry in the array list is a linked list or
is null if that row is empty.

 5

You may choose to implement the linked list in one of two ways. You can use
raw list nodes.

public class SparseGridNode
{
 private Object occupant;
 private int col;
 private SparseGridNode next;
 . . .
}

Or you can use a LinkedList<OccupantInCol> with a helper class.

public class OccupantInCol
{
 private Object occupant;
 private int col;
 . . .
}

For a grid with r rows and c columns, the sparse array has length r. Each of the
linked lists has maximum length c.

Implement the methods specified by the Grid interface using this data structure.
Why is this a more time-efficient implementation than BoundedGrid?

Note: To add a new grid to the GUI, open the World.java file. Find the
World(grid) constructor and add the new grid class name as follows.

 public World(Grid<T> g)
 {
 gr = g;
 gridClassNames = new TreeSet<String>();
 occupantClassNames = new TreeSet<String>();
 addGridClass("info.gridworld.grid.BoundedGrid");
 addGridClass("info.gridworld.grid.UnboundedGrid");
 addGridClass("SparseBoundedGrid"); //Use the class name
 }

Recompile this file. When you execute a runner class and choose the World
menu->set grid, the new grid type will be available for you to choose.

 6

2. Consider using a HashMap or TreeMap to implement the SparseBoundedGrid.
How could you use the UnboundedGrid class to accomplish this task? Which
methods of UnboundedGrid could be used without change?

Fill in the following chart to compare the expected Big-Oh efficiencies for each
implementation of the SparseBoundedGrid.

Methods SparseGridNode
version

LinkedList<OccupantInCol>
version

HashMap
version

TreeMap
version

getNeighbors
getEmptyAdjacentLocations
getOccupiedAdjacentLocations
getOccupiedLocations
get
put
remove

3. Consider an implementation of an unbounded grid in which all valid locations
have non-negative row and column values. The constructor allocates a 16 x 16
array. When a call is made to the put method with a row or column index that is
outside the current array bounds, double both array bounds until they are large
enough, construct a new square array with those bounds, and place the existing
occupants into the new array.

Implement the methods specified by the Grid interface using this data structure.
What is the Big-Oh efficiency of the get method? What is the efficiency of the
put method when the row and column index values are within the current array
bounds? What is the efficiency when the array needs to be resized?

