Invitation to Computer Science, 7th Edition

9-8

Chapter 9
Introduction to High-Level Language Programming
A Guide to this Instructor’s Manual:

We have designed this Instructor’s Manual to supplement and enhance your teaching experience through classroom activities and a cohesive chapter summary.
This document is organized chronologically, using the same headings that you see in the textbook. Under the headings you will find: lecture notes that summarize the section, Teaching Tips, Class Discussion Topics, and Additional Projects and Resources. Pay special attention to teaching tips and activities geared towards quizzing your students and enhancing their critical thinking skills.
In addition to this Instructor’s Manual, our Instructor’s Resources also contain PowerPoint Presentations, Test Banks, and other supplements to aid in your teaching experience.
	At a Glance

Instructor’s Manual Table of Contents

· Overview

· Objectives

· Teaching Tips and Quick Quizzes
· Class Discussion Topics

· Additional Projects

· Additional Resources

· Key Terms
	Lecture Notes

Overview

Chapter 9 introduces the concept of a high-level programming language. These languages are much closer to pseudocode, and allow the programmer to ignore details about moving values around in memory. Code produced in high-level languages can be run on multiple computers using compilers or interpreters. Procedural languages share a common philosophy, but differ in the details of syntax and semantics. Ada, C++, C#, Java, and Python are all examples of procedural languages. The chapter illustrates the similarities and differences through two details examples, and provides a table that compares the five languages for a wide range of language features. The chapter introduces the software development life cycle, needed to make large-scale software development feasible. It introduces the stages of the life cycle, and explains what is done for each part. It describes the waterfall model of development, and compares it to agile software development.
Teaching Tips

9.1 The Language Progression
1. Note the existence of online chapters that focus on each of the languages discussed in this chapter. Think about choosing one or more of these chapters to augment the material here. It is also important to decide from the start if you are going to use all five languages, or choose one or two to discuss.
2. Discuss the motivation for developing high-level programming languages, based on the need for easier programming, and assembly language’s disadvantages. These include manual management of data movement, breaking each task into tiny subtasks, machine specific code, and statements far from natural language (or pseudocode).
3. We expect the following of high-level programming languages: programmer does not need to manage the movement of data; programmer can take a macroscopic view of tasks, programs are portable from machine to machine, programming statements are closer to natural language and use standard math notation. Introduce the term third-generation language as an alternative description of high-level languages.

4. Translating high-level languages to machine code (remind them of the term object code) is more complex. Discuss how compilers work, translating source code to either assembly or an assembly-like language, and the use of assemblers and the linker to integrate code libraries into the executable module.
Quick Quiz 1
1. The program that combines together object code for a program and code libraries to generate the executable module is called a(n) ________________.

Answer: linker
2. (True or False) A compiler translates high-level source code into machine language.
Answer: False
3. Name two disadvantages of assembly language that high-level languages are meant to overcome.
Answer: Any two of: programmer has to write instructions that control the movement of data among memory and registers, programmer has to break tasks into tiny subtasks, code written in assembly cannot be used on other types of machines, and instructions are very far from natural language or normal math notation
9.2 A Family of Languages
1. Introduce the term procedural languages (imperative languages), and describe its underlying philosophy about describing algorithms. Languages in the procedural language family share an overall approach, but differ in exactly how statements are written, and what each statement means (syntax and semantics).
2. Note the five languages used as examples are: Ada, C++, C#, Java, and Python. If you are going to spend time introducing one of these languages in more detail, using the online chapters, this is a good place to do that.

9.3 Two Examples in Five-Part Harmony
1. Describe the Favorite Number algorithm and its pseudocode description. Then with the students’ help, make a list of things to look at, drawing both from the pseudocode they have already seen, and the features of assembly language. Items on the list might include: comments, creating variables, arithmetic operations, input and output, and marking the beginning and ending of blocks. Emphasize that students are not expected to understand every bit of the programs.

	Teaching Tip

	It is helpful for students to see the same code in two different languages side-by-side. If you have the option to project two different screens, you can put up two programs at once and mark the same feature in each (input operations, for example). Otherwise, consider an activity where students are given pairs of programs on paper and asked to mark the same features.

2. Remind students of the Data Cleanup algorithm. Because it is more complex, take time to work through examples again. Use the pseudocode as the basis for noting things to look for in the actual code: control structures like the while loop and if statements, how the n data items are represented and how references to “the item at position left” become code. The programs are longer, consider dividing the programs into sections that have a common purpose, like “setting up data,” “getting input values”, etc.

9.4 Feature Analysis
1. The content for this section exists primarily in Figure 9.15. The table covers six pages. Every pair of pages covers one set of language features: three example languages on one page and two on the next. The first two sets of features pertain mostly to basic syntax; the last set describes deeper features such as scope, parameter passing, and object-oriented programming.

2. Pick and choose carefully those features from the table that you want to talk about. Then ask students to look back at the code examples from the previous section and generate the values from the table themselves, rather than simply presenting the material from the table.

9.5 Meeting Expectations
1. This section revisits the expectations introduced at the start of the chapter and examines how these example languages meet each expectation.

2. For the expectation that the movement of data in memory will be hidden, point out how high-level languages treat variables, both declarations, assignment statements, and arithmetic.

3. For the expectation that the programmer can describe tasks at a macroscopic level, point out how similar to pseudocode these languages are. Arithmetic uses standard notation (for the most part), and loops and conditionals are very far from assembly language.

4. For the expectation that the program will be portable, discuss the variety of translation models that permit high-level languages to be portable. These include a separate compiler for each machine that translates to that machine’s assembly, a single compiler that translates to a machine-independent bytecode that is then either interpreted or compiled by a small program on the user’s machine, or an interpreter designed for the user’s machine.

5. For the expectation that program statements will be more like natural language and standard math notation, it is fairly obvious that high-level languages succeed in that, subject to the constraint that the programs must be able to be compiled.

9.6 The Big Picture: Software Engineering
1. Introduce the term software development life cycle, and discuss the percentages of time professional developers spend on each part of the process. Discuss the difference in scale between the kinds of programs students have seen so far (both pseudocode and the actual code in the earlier section) and real-world professional software. Introduce the term software engineer, and explain why it is used in the professional world. Note that students who major in computer science can go on to become software engineers.

	Teaching Tip

	Consider picking a single, small example to illustrate the software development life cycle. With the students, work through each phase, showing what the various documents would look like for this example.

2. Introduce the term feasibility study, and use a concrete example to illustrate the cost/benefit analysis of such a study. Note the product of this phase: a feasibility document.

3. Introduce the term problem specification, and emphasize the detailed nature of the document it produces. Talk in detail about data, inputs, and error-handling.

4. Introduce the terms program design phase, divide-and-conquer, and top-down decomposition. Illustrate the design process with a small example. Note the product of this phase: a program design document. In an object-oriented programming approach objects are identified, together with their data and subtask (methods) they perform.
5. Introduce the term coding, for writing the program from the design. Introduce the term debugging, for the initial testing to make the code correct. Describe the three types of errors: syntax errors, runtime errors, and logic errors.

6. Introduce the term empirical testing, for the formal testing that follows each code-writer’s individual debugging. Emphasize the creation and storage of sets of tests that are intended to thoroughly exercise a program. Testing occurs at multiple levels: unit testing, integration testing, and regression testing. Introduce the term program verification, and describe its use for critical systems like medical equipment or airplane controls. Introduce the term benchmarking and emphasize that its main purpose is to check the time taken by various parts of the program.

7. Discuss the wide range of documentation that provides a written record of the development of a project (note the importance of clear writing for software developers). Introduce the terms: internal documentation, external documentation, technical documentation, and user documentation.

8. Introduce the term program maintenance, and describe the activities that fall within it, including fixing errors, updating for new hardware or operating systems, and adding new features based on user demand.

9. Describe the need for tools to support software development. Introduce the term integrated development environment (IDE), and describe the various programs that make up a typical IDE. Introduce the term prototypes; many IDES support the creation of GUI prototypes. Describe tools for version control and document-tracking.

10. Compare the waterfall model, described previously, with the new agile software development approaches. Note the key difference is the emphasis on many passes through the sequence of specification, design, coding, and testing, with small increments made at each point. Note that pair programming is often used even with beginning programmers.

Class Discussion Topics

1. What features of the different languages you’ve seen do you like best? Are all those features in the same language? Discuss why there are so many different languages, all with the same underlying approach. Why isn’t there just one “right” language?
2. Compare the software development process with processes suggested for writing papers. Are there parallels; are there significant differences?

3. If you were designing a language, and wanted it to be more like natural language, how would you choose to describe conditional statements and loops? How would your form differ from those of the languages you’ve studied?

Additional Projects
1. Take a sample program (provided by your instructor) and try to convert it into the kind of pseudocode used in your textbook. What parts of the program are unnecessary when describing an algorithm in pseudocode? What parts stay more or less the same?

2. Given a problem to solve (provided by your instructor), work through the waterfall model of the software development life cycle. Perform an informal feasibility study, producing a feasibility document a paragraph or two long. Then refine the problem statement to be a problem specification document. Design pseudocode for your program design document. If you have been learning to program in a particular language, then complete the process by coding and testing your program.
3. Take programs that solve the same problem, but written in two different languages described in this chapter. For every 2-3 lines of each program, list the lines that correspond in the other program. Are there any lines that have no corresponding lines?
Additional Resources

1. A website describing the philosophy and approach of agile software development: http://www.agile-process.org/

2. An article comparing C# and Java: http://msdn.microsoft.com/en-us/library/ms836794.aspx
3. A tutorial about why and how version control systems work: http://betterexplained.com/articles/a-visual-guide-to-version-control/

Key Terms
· Agile software development: An approach to software development that emphasizes a flexible and ready response to meet a shifting target.
· Benchmarking: Running a program on many data sets to be sure its performance falls within required limits; timing the same algorithm on two different machines.
· Code library: A collection of thoroughly tested object code for various useful tasks.
· Coding: The process of translating the detailed designs into computer code.
· Debugging: The process of locating and correcting program errors.
· Divide-and-conquer: A program design strategy in which tasks are broken down into subtasks, which are broken down into sub-subtasks, and so on, until each piece is small enough to code comfortably. These pieces work together to accomplish the total job.
· Empirical testing: Designing a special set of test cases and running the program using these test data.
· Executable module: The resulting object code after a linker inserts requested code from code libraries.
· External documentation: Any materials assembled to clarify the program’s design and implementation.

· Feasibility study: A step in the software development life cycle that evaluates a proposed project and compares the costs and benefits of various solutions.
· Imperative language: Same as procedural language.

· Integrated development environment (IDE): A collection of programs that support software development, such as debuggers, editors, toolkits, and libraries, that lets programmers perform several tasks within the shell of a single application.
· Integration testing: After unit testing, integration testing is done to see that the modules communicate the necessary data between and among themselves and that all modules work together smoothly.
· Internal documentation: Documentation that is part of the program code itself.
· Linker: A piece of system software that inserts requested object code from code libraries into the object code for the requesting program.
· Logic error: An error in the algorithm used to solve a problem.

· Object code: Machine language instructions.

· Pair programming: Involves two programmers at a single workstation. At any given point in time, one is writing code and the other is actively observing, watching for possible errors but also thinking about the overall approach.
· Problem specification: A step in the software development life cycle that involves developing a clear, concise, and unambiguous statement of the exact problem the software is to solve.
· Procedural language: A program written in a procedural language consists of sequences of statements that manipulate data items.
· Program design phase: A step in the software development life cycle that plans the structure of the software to be written.
· Program maintenance: The process of adapting an existing software product due to errors, new system requirements, or changing user needs.
· Program verification: Used to prove that if the input data to a program satisfies certain conditions, then, after the program has been run on these data, the output data satisfies certain other conditions.
· Prototype: Sample graphical user interfaces (GUIs) created early in the software development process in order to get user input.
· Regression testing: If anything is changed on an already-tested module, regression testing is done to be sure that this change has not introduced a new error into code that was previously correct.
· Runtime error: An error that occurs when the program is run using certain sets of data that result in some illegal operation, such as dividing by zero.
· Semantics: The meaning of correctly written programming statements.

· Software development life cycle: The overall sequence of steps needed to complete a large-scale software project.
· Software engineering: Large-scale software development.

· Source code: High-level language instructions.

· Syntax error: An error that occurs because a program statement fails to follow the correct rules of syntax.
· Technical documentation: Documentation that enables programmers who later have to modify the program to understand the code.
· Third-generation language: Another name for high-level programming language as opposed to machine language (first generation) or assembly language (second generation).
· Top-down decomposition: A program design strategy in which tasks are broken down into subtasks, which are broken down into sub-subtasks, and so on, until each piece is small enough to code comfortably. These pieces work together to accomplish the total job.
· Unit testing: Testing each module of code as it is completed.
· User documentation: Documentation that helps users run the program.
· Waterfall model: The traditional model of software development that follows a series of steps.
· Syntax: The rules for exactly how programming statements must be written; the grammatical structure of a programming language
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

