Invitation to Computer Science, 7th Edition

6-8

Chapter 6
An Introduction to System Software and Virtual Machines
A Guide to this Instructor’s Manual:

We have designed this Instructor’s Manual to supplement and enhance your teaching experience through classroom activities and a cohesive chapter summary.
This document is organized chronologically, using the same headings that you see in the textbook. Under the headings you will find: lecture notes that summarize the section, Teaching Tips, Class Discussion Topics, and Additional Projects and Resources. Pay special attention to teaching tips and activities geared towards quizzing your students and enhancing their critical thinking skills.
In addition to this Instructor’s Manual, our Instructor’s Resources also contain PowerPoint Presentations, Test Banks, and other supplements to aid in your teaching experience.
	At a Glance


Instructor’s Manual Table of Contents

· Overview

· Teaching Tips and Quick Quizzes
· Class Discussion Topics

· Additional Projects

· Additional Resources

· Key Terms
	Lecture Notes


Overview

Chapter 6 introduces the programs and tasks that make up system software for a computer. It describes in detail how and why assembly language is used for programming a computer, rather than programming directly in machine language. It describes the main tasks an operating system needs to perform, and how the operating system interacts with the user and with other subsidiary programs to perform its tasks. It provides a historical overview of operating system development, emphasizing how each generation sought to improve on previous systems.
Teaching Tips

6.1 Introduction

1. Introduce the term naked machine and describe what it would be like to work with a machine with no system software to help.
2. The operating system and other system software creates an interface for the user that hides ugly details, makes it easier to see what is going on and protects the computer from errant damage by the user. See the analogy with the dashboard and controls of a car, versus what is happening under the hood.
6.2 System Software
1. Introduce the term system software, emphasizing that it is software, not hardware. List the purposes of system software: hide complex details, present important information in easy format, permit access to machine resources in easy way, provide safe and secure environment. Note the system software creates a virtual machine/virtual environment for the user.

2. Introduce the term operating system, and distinguish it from some other software packages, including the graphical user interface (GUI), language services, memory manages, information managers, I/O system, and scheduler. Introduce the term program libraries, and mention that these are often for use with programming languages.

3. Compare the work required to write, load, and run a program on a naked machine with the work required when using tools provided by an operating system and applications program.

6.3 Assemblers and Assembly Language
1. Describe shortcoming of machine language, and introduce term assembly language for the first step toward human-friendly notation. Introduce the term low-level programming languages, and emphasize that each assembly language instruction translates to exactly one machine language instruction.
2. Assembly language must be translated into machine language: the processor does not understand it directly. Introduce the terms source program, object program, assembler, and compiler.
3. Emphasize the three advantages of assembly language: use of symbolic op codes, use of symbolic memory addresses, and “pseudo-operations” that generate data, etc. Note that the preceding chapter used the symbolic names for operations already. Symbolic labels make assembly code easier to read, and easier to modify. Pseudo-ops are actually instructions to the assembler: do examples with data generation and .BEGIN/.END.

4. Go over several examples of assembly language programs. Start small and end with full-scale algorithms turned into assembly. Ask students to read and write assembly programs as well.
	Teaching Tip 


	For students to truly understand assembly language programs, they must develop two skills: reading and understanding assembly programs, and writing them. Divide students into groups and ask them to work through novel assembly programs until they can quickly and accurately determine what the programs do. Then start with tiny examples and have the groups develop assembly programs from pseudocode.




5. Introduce the key tasks of the assembler: translating op codes, translating symbolic addresses, performing pseudo-op tasks, and creating an object file. Introduce the term object file. Emphasize how the assembler is a program, written using all the tools of design and analysis from earlier chapters. In particular, note the discussion of sequential versus binary search for looking up symbolic op codes. Introduce the term pass; assemblers frequently perform more than one pass over the assembly language program.

6. Introduce the term symbol table, and describe how assemblers work in one pass to collect the symbolic labels and their relative position with respect to the start of the program. Then in a second pass the assembler substitutes the position for the symbol. Introduce the term binding for the process of associating symbolic names with memory addresses.

7. Introduce the term loader, and describe its purpose: to place the machine language program into memory and send it to the hardware.

Quick Quiz 1
1. A program written in assembly language is called a(n) ________________. 

Answer: Source program
2. (True or False) Pseudo-ops are instructions for services provided by the assembler.
Answer: True
3. (True or False) A pass is when the assembler chooses not to do anything with a particular program.
Answer: False
4. Name two advantages of assembly language programs over machine instruction programs.
Answer: any two of: readability, maintainability, symbolic labels, program clarity, symbolic op codes, pseudo-ops
6.4 Operating Systems

1. Introduce the term system commands; system commands may be given by text typed into a terminal or by interacting with the computer’s GUI. Most students will never have seen or used terminal commands: demonstrate it for them.

2. The next section examines five important operating system tasks: the user interface, system security and protection, program scheduling and activation, efficient allocation of resources, and safe use of resources.

3. User interface algorithm is an endless loop of waiting for input from users, performing the appropriate action, and repeating. Text-oriented user interfaces require users to learn a command language. Graphical user interfaces use standardized metaphors and icons to make interactions easier.

4. System security and protection ensures that only authorized actions are permitted. Emphasize the role of usernames and passwords. Introduce the term superusers for administrators who have greater access. Discuss how operating systems encrypt critical data like password files to increase security.

5. Discuss the efficient allocation of resources and its importance for enabling multitasking on the computer. Multiple programs can run at the same time by maintaining a queue of ready programs: a program is either running, ready, or waiting for some I/O. Running program gets a short amount of time, then another is selected.

6. Safe use of resources refers to the problem of deadlock: when different programs require the same resources, each one has one resource and is waiting for the other.

7. When discussing the historical development of operating systems, emphasize (1) how this shows the iterative process of design and development and (2) how understanding of more simple operating system designs will make it easier to understand modern, complex operating systems.

	Teaching Tip 


	Great posters are available that show timelines for operating systems:

http://www.levenez.com/



8. First generation computer operating systems were almost naked machines. Introduce the term batch operating systems, the second generation. New: a job control language so programmers, not at the machine, could specify basic operating system commands.

9. Introduce the term multiprogrammed operating systems, the third generation. 
Emphasize the new need for system security and safety. Introduce the term time-sharing system. Discuss how the illusion of sole access was created by the use of time slices; and mention the modern application: a single computer running iTunes, a web browser, and a word processor.

10. Introduce the term network operating system, the fourth generation. Communication with other computers over a network becomes critical, and accessing shared resources (i.e., printers and servers). Introduce the terms real-time operating system and embedded systems as examples of network operating systems. 

11. Fifth generation is the future: multimedia interfaces, massively parallel processing systems, and a distributed computing environment. Resources are seamlessly local or not. Introduce the term cloud computing.

Quick Quiz 2
1. Name two important operating system tasks.
Answer: Any two of: user interface, security and safety, program scheduling, efficient use of resources, safe use of resources, communications with external devices, communications with computer network, etc.
2. (True or False) Multiprogrammed operating systems are future systems that use many processors to run programs at the same time.
Answer: False
3. A(n) _____________ consists of text instructions that tell the operating system what to do.
Answer: command language
4. A collection of resources whose location is not known to the user is called _________.
Answer: cloud computing
Class Discussion Topics

1. Look at the list of common operating system tasks in section 6.4.1. Which of these tasks have you performed in the past several weeks, and how did you perform them? 
2. Why does an assembler use two passes to handle symbolic labels in assembly language programs? Why can’t it just do everything in one pass?

3. What advantages did each generation of operating system have over the previous ones? What problems was the next generation trying to solve?
Additional Projects
1. Take a program written in assembly language (given to you by your instructor) and determine what the program is calculating. What answer will it produce for specific starting values, but also, at a high level, what is its purpose?

2. Take the brief assembly language program (given to you by your instructor) and perform the two passes described in the book to translate the program into its machine language equivalent, starting the program at location 0 in memory.
3. Take a program written in pseudocode and construct an assembly language program for it. What parts of the program are easy or difficult to construct?

Additional Resources

1. History of the development of graphical user interfaces: http://arstechnica.com/old/content/2005/05/gui.ars
2. Tutorial to terminal-based UNIX commands: http://www.ee.surrey.ac.uk/Teaching/Unix/
3. Tutorial to terminal-based Windows commands: http://www.bleepingcomputer.com/tutorials/windows-command-prompt-introduction/
Key Terms
· Algorithmic problem solving cycle: The sequence of designing an algorithm, coding it into a programming language, translating it into machine language, and then running it on a Von Neumann computer to solve the problem.

· Assembler: The program that translates a source assembly language program into machine language.

· Assembly language: A low-level programming language that maps 1:1 into machine language.

· Batch operating system: A type of operating system in which a batch of programs are collected and then run as a group, all at once, one after the other.

· Binding: The process of associating a symbolic name with a physical memory address.

· Cloud computing: A computing system in which the user can be completely unaware of where data is stored and where services are being provided.

· Command language: The language used to enter system commands. Today it is more commonly a set of actions, such as mouse clicks or finger taps.

· Compiler: The program that translates a high-level language into machine language.

· Deadlock: When a computer is frozen because it is waiting for an event to occur that never will.

· Distributed computing environment: A system that hides the exact location of specific pieces of information and allows the user to view the system as simply one large collection of resources.

· Embedded systems: Computers that are placed within other types of devices to control their operation.

· Encrypt: To change plain text into coded text that cannot be understood without specific details about the encoding algorithm.

· Graphical User Interface (GUI): The visual overview of the computer that is provided by the operating system.
· High-level programming language: a programming language that uses both natural language constructs and mathematical notation.

· Loader: System software that reads instructions from the object file and stores them into memory for execution.

· Low-Level Programming Language: The general term for a programming language that is close in design to machine languages.

· Multiprogrammed Operating System: A type of operating system in which multiple user programs are loaded into memory at the same time, and the computer takes turns running them.

· Naked machine: A computer without any helpful system software to facilitate its usage.

· Network operating system: An operating system that manages the resources of both the local computer as well as providing efficient access to a collection of remote resources via a computer network.

· Object file: The file produced by the assembler or compiler that contains the translated machine language instructions and the address of where each instruction is to be loaded.

· Object program: The translated source program produced by the assembler or compiler.

· Operating system: The main piece of system software that helps to run and manage the computer system.

· Parallel processing system: An operating system that controls the operation of computers with multiple processors.

· Pass: An examination of every statement in the source program by an assembler or compiler.

· Program library: A collection of software utilities provided for the user.

· Pseudo-op: An assembly language command that does not actually produce a machine-language instruction but performs a service on behalf of the user.

· Real-time operating system: An operating system that must provide access to particular resources or respond to system problems within a well-defined time limit.

· Source program: The original program as written by the user.

· Superuser: A privileged user who has access to virtually all services and information stored on the computer; the system administrator.

· Symbol table: A table that contains the name of every symbolic variable in a program and its equivalent binary memory address.

· System commands: Commands given by the user to the operating system to perform a service on the user’s behalf.

· System software: A collection of computer programs that manage the resources of a computer and facilitate access to those resources.

· Time-sharing system: Another type of multiprogrammed operating system but one in which the user can interact with the running program.

· Virtual environment: Another term for a virtual machine.
· Virtual machine: The computer system as perceived by the user as opposed to the hardware that actually exists; the set of services and resources created by the software and seen by the user. Also called a virtual environment.

© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

