Invitation to Computer Science, 7th Edition

3-1

Chapter 3
The Efficiency of Algorithms

A Guide to this Instructor’s Manual:

We have designed this Instructor’s Manual to supplement and enhance your teaching experience through classroom activities and a cohesive chapter summary.
This document is organized chronologically, using the same headings that you see in the textbook. Under the headings you will find: lecture notes that summarize the section, Teaching Tips, Class Discussion Topics, and Additional Projects and Resources. Pay special attention to teaching tips and activities geared towards quizzing your students and enhancing their critical thinking skills.
In addition to this Instructor’s Manual, our Instructor’s Resources also contain PowerPoint Presentations, Test Banks, and other supplements to aid in your teaching experience.
	At a Glance


Instructor’s Manual Table of Contents

· Overview

· Teaching Tips and Quick Quizzes
· Class Discussion Topics

· Additional Projects

· Additional Resources

· Key Terms
	Lecture Notes


Overview

Chapter 3 introduces the kinds of attributes algorithms have, and the methods by which computer scientists evaluate and compare algorithms. Among the algorithm attributes, the most important are time efficiency and space efficiency. The chapter introduces the concept of orders of magnitude, and examines a variety of algorithms to determine the order of magnitude of each algorithm’s time efficiency. Some examples show the use of efficiency analysis, both time and space, to compare different algorithms for the same problem. It discusses the time/space tradeoff, and the existence of intractable problems with no known efficient solutions.
Teaching Tips

3.1 Introduction

1. Remind students that they’ve seen multiple algorithms that solve the same problem in different ways. We need a way to compare algorithms to each other, and to assess the quality of algorithms. Use the metaphor from the book: when purchasing a car, we take into account ease of handling, style, and fuel efficiency. Draw parallels to algorithms: ease of understanding, elegance, and time/space efficiency.
3.2 Attributes of Algorithms
1. Before going into details, summarize the attributes that this section talks about: correctness, ease of understanding, elegance, and efficiency. Continue with the car metaphor as much as possible.

2. Correctness is a critical expectation. Keep in mind two components of correctness: is the problem specified correctly, and does the algorithm produce the correct result for every possible input. Use an algorithm from the previous chapter to illustrate issues with determining correctness.

3. Program maintenance occurs when a program is modified to add new features or correct bugs. Programs that are easy to understand make program maintenance easier.

4. Algorithms that are elegant use a clever or non-obvious approach and have a simple structure (sometimes deceptively so). Give examples of elegant algorithms, including Gauss’ summing example from the book, but also others. Beginning students find this a concept hard to pin down.

5. Note that these attributes are sometimes at odds with each other: efficiency may reduce ease of understanding, and ease of understanding opposes elegance. Sometimes they reinforce each other: ease of understanding can make determining correctness easier.

	Teaching Tip 


	Give students the following in-class activity to help them understand issues of correctness, ease of understanding, and elegance: Divide students into teams and ask the teams to design an algorithm for a given problem. After each team writes down its algorithm, swap the algorithms to new teams. The new team is responsible for reading the algorithm and assessing it for the three attributes above. Each new team presents its algorithm to the class along with its assessment.


6. Introduce the term efficiency. Distinguish between space efficiency and time efficiency. Talk about the confounding factors, such as machine speed, size of input, and particular input values, that make simply timing an algorithm infeasible.

7. Introduce the term benchmarking, and talk about its uses: for comparing different computers on the same inputs, and for comparing different inputs to the same algorithm on a single computer.
Quick Quiz 1

1. Name two of the attributes of an algorithm discussed in this section. 
Answer: correctness, ease of understanding, elegance, and efficiency.
2. Timing an algorithm on different inputs on the same computer is one example of which of the following?

(a) correctness testing

(b) program maintenance

(c) benchmarking 

(d) algorithm swizzling

Answer: c, benchmarking
3. (True or False) An algorithm that is elegant is always easy to understand. 


Answer: False
3.3 Measuring Efficiency
1. Introduce the term analysis of algorithms, the study of the efficiency of algorithms. Point out that there is a special term for this because of its importance. This section will introduce the concepts related to algorithm analysis through a series of examples.
2. Introduce the term sequential search algorithm, and remind students that they have seen this algorithm before, in Chapter 2.

3. The key idea for this example is the notion of the central unit of work: finding the operations that are most important for the task the algorithm is solving. For sequential search, the essential operation is the comparison of NAME to each name in the list. Discuss why this is so.

4. Explain clearly what best case and worst case mean. It is important to make clear that the best case does not refer to the smallest input size, but always is relative to some unspecified but large input size. Best case for sequential search is one comparison; worst case is n comparisons.

5. Average case depends on how often different cases recur. For sequential search, if all names are equally likely to be searched, then the average balances out at roughly n/2 comparisons.
6. Introduce the term order of magnitude n, and its notation Θ(n). The key to understanding this group is to note that all linear functions have a fixed rate of change: the change from one value of n to the next is always constant.

7. Introduce the two terms searching and sorting, and explain that these are two very common tasks for computers. Mention common applications, including web searching where results are sorted by relevance.

8. Introduce the term selection sort algorithm, and describe its approach: divide the list into a sorted and unsorted section, and repeatedly find the largest value in the unsorted section, and move it to its proper location. A physical example is useful when introducing sorting: playing cards, books, students sorted by birthday, are all great approaches.

	Teaching Tip 


	Refer students to the following link for a nice animation of sorting algorithms: http://math.hws.edu/TMCM/java/xSortLab/



9. Selection sort has a hidden unit of work: the comparisons done inside the “find largest” step are the crucial element. Discuss carefully how the amount of work done for each instance of finding the largest changes, gradually diminishing.

10. Introduce the term order of magnitude n2, and its notation Θ(n2). The most important concept here is the fact that eventually every function that has order of magnitude n2 will have greater values than any function that has order of magnitude n. Use the walking versus driving analogy.

Quick Quiz 2
1. The problem of putting a list of items in order is called _____________.
Answer: sorting
2. (True or False) Functions with order of magnitude n will eventually grow faster than a function with order of magnitude n2, for some big enough value of n.

Answer: False

3. (True or False) Sequential search has order of magnitude n in the worst case and the average case.

Answer: True

4. To determine the time efficiency of an algorithm, we must first determine:

(a) the number of lines in the algorithm

(b) the central unit of work in the algorithm

(c) whether or not a while loop appears in the algorithm

(d) whether or not the algorithm is named properly

Answer: (b)
3.4 Analysis of Algorithms
1. Tie this section together by explaining that this section illustrates algorithm analysis in three ways. It shows how to use analysis to compare three different algorithms for a new problem (data cleanup), it uses analysis to show a better solution to a known problem (searching), and it uses analysis to study the performance of a known algorithm (pattern matching).

2. Describe the new problem: the data cleanup problem, the task of removing zeros from a collection of age data.
	Teaching Tip 


	Begin this section by giving students an example of this problem and asking them to solve it, and then discussing the different approaches they took to the problem. Note that different media will tend to support different algorithms: pen and paper versus on the board versus separate cards for individual data items.




3. The shuffle-left algorithm removes zeros by shifting all values to the right of a zero one cell to the left. If the values were written on cards, this would correspond to sliding the cards to the left to fill in the empty slot from removing the zero card. Illustrating this algorithm with an example on cards might be easier than writing an erasing an example on the board. 

4. The best case for shuffle-left is when no zeros occur; the algorithm just checks each value to see if it is zero for a time efficiency of Θ(n). The worst case occurs when all the values are zero; the algorithm will move n-1 zeros, then n-2 zeros, and so forth. This has a time efficiency of Θ(n2). Note that shuffle-left uses no significant extra space.

5. The copy-over algorithm copies non-zero values to a new list. The best and worst cases are opposite to the shuffle-left algorithm. When the original list contains only zeros, then the copy-over algorithm copies nothing, and does just the work required to check each value: Θ(n). It also uses no extra space in this case. When the original list contains no zeros, then the algorithm copies every value. This also takes Θ(n) time, but also uses an extra n in space. Note that the best and worst cases here are the same order of magnitude.

6. Compare shuffle-left with copy-over for worst-case performance, and note the time/space tradeoff between the two.

7. The converging-pointers algorithm is more complex than the previous two. Illustrate this algorithm using clear markers for the left and right pointers (your fingers, arrows drawn or taped, or two students). This algorithm has best and worst cases of Θ(n), because we avoid moving more than one value per zero.

8. Introduce the term binary search algorithm, and explain that it is a different approach to solving the search problem from before. Emphasize the tradeoff between better performance and the constraint that the data must be sorted. Students often attempt to apply this algorithm to unsorted data!

9. Use the metaphor of searching a telephone directory to illustrate the way in which binary search splits the data in half at each point. Show examples of thinking of the list as a binary search tree.

	Teaching Tip 


	It is incredibly effective to illustrate binary search by bringing in a reasonably small telephone directory or dictionary and physically tearing the book in halves, following the binary search algorithm. 




10. Best case for binary search, and any search algorithm is always one comparison. The worst case is log2 n, where n is the number of elements. Spend time explaining logarithms; many students do not remember them well.

11. Introduce the term order of magnitude lg n, Θ(lg n), and show students how slowly it grows compared to linear or quadratic growth. 

12. The pattern-matching algorithm was discussed in chapter 2; its analysis is more complex than previous examples. Emphasize that both best and worst case can happen when the pattern does not appear in the text. Best and worst cases are both somewhat artificial; explain that they are the extremes, and actual performance should be between.

13. Have students work through small examples of best and worst case in detail, and then generalize to the overall formulas.

Quick Quiz 3
1. Name an order of magnitude that grows faster than Θ(n).
Answer: any one of: Θ(n2), Θ(n3), Θ(2n), or similar
2. The binary search algorithm has a worst case order of ______________.
Answer: Θ(lg n)

3. (True or False) The best case performance for the pattern-matching algorithm occurs when the pattern occurs at every position of the text.

Answer: False

4. (True or False) The converging pointers algorithm to solve the data cleanup problem is most efficient both in time and space.

Answer: True
3.5 When Things Get Out of Hand
1. Introduce the term polynomially bounded, and explain that the problems seen so far all have such solutions.

2. Describe the Hamiltonian circuit problem, and ask students to solve a small instance of the problem.

3. The algorithm to find a Hamiltonian circuit checks every possible path in the graph. Use concrete examples other than the book’s to illustrate how we can conceive of that search as traversing a tree of choices. Give examples that have more than two choices per vertex.

4. Using the simple case of a graph with exactly two choices at each node, show how we determine that the number of possible paths is 2n. Introduce the term exponential algorithm.

5. Introduce the term intractable, and describe some problems that seem intractable, including the Hamiltonian circuit, bin-packing, and solving a game of chess.

6. Introduce the term approximation algorithms, which provide partial solutions to intractable problems.

Class Discussion Topics

1. Consider the attributes discussed in section 3.2. Which attributes are subjective to evaluate, and which could be objectively evaluated? Explain your reasoning.
2. Binary search requires that the data be sorted before it can be applied. If we start with unsorted data, and use selection sort to sort it, how many searches must we do using binary search to be more efficient than sequential search on the unsorted data?
3. Compare the three data cleanup algorithms in the book for all the attributes discussed in section 3.2. Which algorithm do you rate as best for each of the individual attributes (e.g., which algorithm is the most elegant, which the most maintainable)? Taking all the attributes into account, which algorithm seems best overall?
4. Why isn’t the best case performance of an algorithm always when the input size is zero or one?
Additional Projects
1. Give students an algorithm that determines whether a list of values has no repetitions in it. Ask them to work together to determine what the basic unit of work in the algorithm is, what the best and worst case efficiencies are, and under what circumstances they occur.
2. Evaluate the efficiency of the Find Maximum algorithm from the book. Does it have a best case that differs from its worst case?
3. Take a sorted list containing the following values: 3, 6, 10, 14, 15, 23, 27, 29, 32, and 44. Find a value to search for that causes sequential search to perform the most comparisons. Find a value to search for that causes binary search to perform the most comparisons. How do the worst cases compare for these two algorithms on this particular list?
Additional Resources

1. A listing of famous intractable problems : https://sites.google.com/site/dtcsinformation/other-topics/complexity/classic-intractable-problems
2. CS Unplugged video demonstration of binary search: http://www.youtube.com/watch?v=iDVH3oCTc2c&feature=related
3. Animation of bin-packing approximation algorithm: http://www-cg-hci.informatik.uni-oldenburg.de/~da/iva/baer/binpacking/index.html
 

Key Terms
· Analysis of algorithms: The study of the efficiency of algorithms.
· Approximation algorithm: An algorithm that doesn’t solve a problem, but provides a close approximation to a solution.

· Benchmarking: Running a program on many data sets to be sure its performance falls within required limits; timing the same algorithm on two different machines.
· Binary search algorithm: An algorithm that searches for a target value in a sorted list by checking at the midpoint and then repeatedly cutting the search section in half.
· Bubble sort algorithm: [Exercise 9] A sorting algorithm that makes multiple passes through the list from front to back, each time exchanging pairs of entries that are out of order.

· Efficiency: An algorithm’s careful use of time and space resources.
· Exponential algorithm: An algorithm whose work varies as some constant to the power of the input size n.
· Flops: A unit of measure of processor speed: floating-point operations per second.

· Intractable: A problem for which no polynomially bounded solution exists.
· Order of magnitude lg n: The efficiency classification of an algorithm whose work varies as a constant times lg(n).
· Order of magnitude n: The efficiency classification of an algorithm whose work varies as a constant times the input size n.
· Order of magnitude n2: The efficiency classification of an algorithm whose work varies as a constant times the square of the input size.
· Polynomially bounded: An algorithm that does less work than some polynomial expression of the input size n.
· Searching: The task of finding a specific value in a list of values, or deciding it is not there.
· Selection sort algorithm: A sorting algorithm that keeps moving larger items toward the back of the list.
· Sequential search algorithm: An algorithm that searches for a target value in a random list by checking each list item in turn.
· Short sequential search: [Exercise 22] A variation of the sequential search algorithm that requires a sorted list and stops once it has passed the place where the target could occur.

· Smart bubble sort: [Exercise 12] A variation of the bubble sort algorithm that stops when no exchanges occur on a given pass.

· Sorting: The task of putting a list of values into numeric or alphabetical order.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

