Invitation to Computer Science, 7th Edition

2-7

Chapter 2

Algorithm Discovery and Design

A Guide to this Instructor’s Manual:

We have designed this Instructor’s Manual to supplement and enhance your teaching experience through classroom activities and a cohesive chapter summary.
This document is organized chronologically, using the same headings that you see in the textbook. Under the headings you will find: lecture notes that summarize the section, Teaching Tips, Class Discussion Topics, and Additional Projects and Resources. Pay special attention to teaching tips and activities geared towards quizzing your students and enhancing their critical thinking skills.
In addition to this Instructor’s Manual, our Instructor’s Resources also contain PowerPoint Presentations, Test Banks, and other supplements to aid in your teaching experience.
	At a Glance

Instructor’s Manual Table of Contents

· Overview

· Teaching Tips and Quick Quizzes
· Class Discussion Topics

· Additional Projects

· Additional Resources

· Key Terms
	Lecture Notes

Overview

Chapter 2 examines algorithmic problem solving as it is seen in computer science. It defines pseudocode, which uses statements in English and math notation, along with structure similar to a programming language. The chapter explains why pseudocode is better for algorithm design than a natural language like English or a programming language: structure is good for clarity, but excessive focus on syntax is bad. The constructs needed for pseudocode are sequential (computations, input, and output), conditional, and iterative statements. The chapter ends with a series of case studies, where the process of developing an algorithmic solution to a problem is carefully illustrated. The problems are multiplication using repeated addition, linear search, finding the maximum element of a list, and pattern matching.

Teaching Tips

2.1 Introduction

1. Begin by discussing the fact that the algorithms in chapter 1 aren’t really suitable for a computer to perform, because they are drawn from everyday life. This chapter will provide examples of problems that are of interest to computer scientists. Note that these are just examples, chosen because they are straightforward and basic, and that there are many and varied other problems of interest.
2.2 Representing Algorithms
1. The important concept in this section is why we choose to describe algorithms in pseudocode, and what pseudocode is. Explain how a natural language and a programming language are two ends of a spectrum, and both poor choices for abstract design. Figures 2.1 and 2.2 give examples of the addition algorithm in the two extreme forms. Look back at figure 1.2 for the pseudocode version of this algorithm.

2. The flaws in natural languages include a lack of structure, and a tendency toward ambiguity.
3. The flaws in a programming language for algorithm design are too many cryptic forms and fussy grammatical details; issues that are unnecessary when first designing or describing an algorithm.

4. Introduce the term pseudocode and discuss its form: English language, with mathematical operations, and a structure similar to a high-level programming language.

5. Remind students that pseudocode is not a precise set of notational rules to be memorized and rigidly followed. It is a flexible notation that can be adjusted to fit your own view about how best to express ideas and algorithms.

6. Introduce the term variable. It is important to discuss how computer science variables are similar to and different from variables in mathematics.

7. Introduce the terms computation, input, and output, which comprise the basic sequential operations. Introduce the term sequential algorithm; Figure 2.3 contains a sample sequential algorithm.

8. Introduce the terms control operations and conditional statements. Use examples from chapter 1 to illustrate conditional statements students have already seen. Figure 2.4 gives a diagrammatic view of a conditional statement, and Figure 2.5 shows a sample algorithm containing a conditional.

9. Introduce the terms iteration, using examples from the previous chapter to start. Go over the parts of a while statement with care: the continuation condition, and loop body. Figure 2.6 gives a diagrammatic view of a while loop, and Figure 2.7 show a sample algorithm with iteration. Figure 2.8 gives a diagrammatic view of the do-while alternative form. Consider rewriting the sample algorithm using do-while.

	Teaching Tip

	The figures in the book gradually elaborate an algorithm for computing gas mileage, starting with a sequential algorithm and ending with one that contains iteration and conditionals. Pick a different example, such as computing sales tax, number of tables to seat guests, etc., and have your students create algorithms themselves: first a simple sequential algorithm, then one with a conditional, etc.

10. Figure 2.9 summarizes the primitive operations for the book’s pseudocode. Discuss the meaning of the term primitive operation.
Quick Quiz 1

1. (True or False) A conditional operation causes its sequential operations to repeat over and over again.
Answer: False
2. A(n) _____________ is a named storage location that can hold a data value.

Answer: variable
3. (True or False) The real power of a computer comes not from doing a calculation once but from doing it many, many times.

Answer: True

4. List the two parts of a while loop.
Answer: continuation condition and loop body

5. List one way in which pseudocode is similar to English, and one way in which it is similar to a programming language.

Answer: Similar to English: It uses English sentences, grammar, etc. Similar to programming language: structured, has a set of known operations, constructs similar to programming language constructs.

2.3 Examples of Algorithmic Problem Solving

1. Explain that the problem for the first example, “Go Forth and Multiply,” is to multiply two numbers without using multiplication. Instead, multiply two values by using repeated addition. This problem comes from Chapter 1, Exercise 12. Be prepared to justify why we might want to do such a thing. Possible justifications include: if we had a small, simple computer that only could do addition, we might need such an algorithm, or to show that the minimal set of operations does not need to include multiplication.
2. There are two approaches to take here. One works through the pseudocode line by line from start to end. The other starts with a vaguely worded description and refines it, piece by piece, to create the final pseudocode. Pick an approach, and work through the algorithm. Figure 2.10 shows the final pseudocode for the “Go Forth and Multiply” problem.
	Teaching Tip

	Many students at this stage have trouble remembering the difference between sequential, conditional, and iterative statements. Take the time to label the steps of the examples or, better yet, ask your students to label them. Perhaps pair them up and have them label a completed algorithm, then collect the labels as a whole class.

3. Introduce the term algorithm discovery.

4. Introduce the sequential search problem: finding a piece of data from a list of data. As a class exercise, ask students to solve the problem of locating a particular person’s name in a telephone book. Provide them with a sample telephone book that has the names in no particular order.

5. Work through the three versions of the sequential search algorithm. Figure 2.11 shows a sequential algorithm solution for finding a name in a telephone book. Discuss with students the drawbacks to this algorithm (length, work done, repetition). Figure 2.12 shows an algorithm that properly uses a loop and conditionals to avoid repetition and work. Figure 2.13 shows a version that works correctly even when the name does not appear in the telephone book.

6. Point out that the structure of data matters a great deal: if the names were in alphabetical order, we could take advantage of that fact and find phone numbers much more quickly.

7. Introduce the “find largest” problem, and point out that finding the smallest is nearly identical. Give some useful applications to motivate the problem: finding the highest bid in an online auction, finding the lowest price on a set of items.

8. Introduce the term library, where useful algorithms can be collected and kept for future re-use.

9. As a class exercise, have the students work in teams through the pictorial version of the algorithm as given in the book: given a pile of cards with numbers on them, find the largest. Then ask them to develop the algorithm in pseudocode. Compare their work to the book’s, from Figure 2.14.

10. Describe the “pattern matching” problem, and emphasize its importance across a wide range of applications: MRI analysis, human and animal genomes, web searching, etc.

11. The pattern-matching algorithm here is composed of two parts. The first part of the algorithm aligns the pattern with a particular position in the text, and slides the pattern ahead one character when it fails to match. Figure 2.15 shows this part of the algorithm, with an abstract step filling in for the second part. The second part compares the pattern with the characters at a given position of the text and determines if there is a match. Figure 2.16 shows the completed algorithm with the second part elaborated.

	Teaching Tip

	Refer students to the link below for an excellent discussion and animation of a broad range of string-matching algorithms.

http://igm.univ-mlv.fr/~lecroq/string/index.html

12. Introduce the terms abstraction and top-down design. Emphasize the importance of abstraction to computer science, including metaphors like desktop, folder, trash can.
Quick Quiz 2
1. A collection of pre-defined algorithms is called a(n) _____________.
Answer: library
2. Why did we add a conditional statement to the second version of the “multiplication by repeated addition” algorithm?

(a) to check if the answer value had become too large, (b) to avoided wasted computations, (c) to check if the input values were numbers, (d) to check if the first number was larger than the second

Answer: b

3. (True or False) Sequential search requires that the data be sorted in order.

Answer: False

4. _____________ is the separation of the high-level view of a thing from the low-level details of its implementation.

Answer: Abstraction
5. Name two real uses of pattern-matching algorithms.

Answer: Any two from searching in documents, finding documents online, medical imaging, human genome searching

6. (True or False) Top-down design refers to a method where you start writing pseudocode at the top of the algorithm and you write it, line by line, until you reach the end.

Answer: False

Class Discussion Topics

1. Explain the purpose of pseudocode. In doing so, explain how and why it differs from natural language and formal programming languages.

2. From everyday life, provide and discuss examples of sequential, conditional, and iterative operations. How do the ways we state these operations in everyday life differ from the ways we state them in pseudocode? Why might there be a difference?
3. Explain why it is necessary for the pattern-matching algorithm to have a “loop inside of a loop.”
Additional Projects
1. Design an algorithm in pseudocode that will take three numbers and determine which of the three is the middle value (less than or equal to one number and greater than or equal to the other).
2. Working in groups of two or three, take an algorithm written in pseudocode. It may be one from the book, or one provided by your instructor. Label each line of the algorithm with one of the following labels: computation, input, output, conditional, iteration.

3. Starting with the definition of find Maximum from the book, modify it so that it finds both maximum and minimum at the same time. Could you modify it so that it finds the three largest values?
Additional Resources

1. Another view of pseudocode: http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html
2. Sequential search: http://video.franklin.edu/Franklin/Math/170/common/mod01/linearSearchAlg.html
3. Human Genome Project : http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml

Key Terms
· Abstraction: The separation of the high-level view of an entity from the low-level details of its implementation.
· Algorithm discovery: The process of finding an algorithmic solution to a given problem.
· Computation: An algorithmic operation that carries out a single numeric computation and stores the result.
· Conditional statements: Operations that ask a question and select the next instruction to carry out based on the answer to that question.

· Continuation condition: The true/false condition that will determine when the iteration has been completed.
· Control operations: Operations that alter the normal sequential flow of control within an algorithm.
· Input: An operation that causes data values from the outside world to be brought into the algorithm.
· Iteration: The repetitive execution of a block of operations.
· Library: A collection of useful prewritten algorithms that can be used during problem solving.

· Loop body: The block of statements that are to be repetitively executed.
· Output: An operation that causes computed values to be sent to the outside world for viewing or saving.

· Primitive operation: An operation that can be directly understood by the computing agent executing the algorithm and which does not have to be further clarified or explained.
· Pseudocode: A notation used to design algorithms. It uses English constructs, mathematical notation and an informal algorithmic structure designed to look like a high-level programming language.
· Sequential algorithm: An algorithm that executes its operations in a straight line, from top to bottom, without any branching.

· Top-down design: A problem solving strategy in which you begin at the highest level view of the problem and, in steps, address the lower-level details of how to accomplish each operation.

· Variable: A named storage location that can hold a data value.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

