Invitation to Computer Science, 7th Edition

12-8

Chapter 12
Models of Computation
A Guide to this Instructor’s Manual:

We have designed this Instructor’s Manual to supplement and enhance your teaching experience through classroom activities and a cohesive chapter summary.
This document is organized chronologically, using the same headings that you see in the textbook. Under the headings you will find: lecture notes that summarize the section, Teaching Tips, Class Discussion Topics, and Additional Projects and Resources. Pay special attention to teaching tips and activities geared towards quizzing your students and enhancing their critical thinking skills.
In addition to this Instructor’s Manual, our Instructor’s Resources also contain PowerPoint Presentations, Test Banks, and other supplements to aid in your teaching experience.
	At a Glance


Instructor’s Manual Table of Contents

· Overview

· Teaching Tips and Quick Quizzes
· Class Discussion Topics

· Additional Projects

· Additional Resources

· Key Terms
	Lecture Notes


Overview

Chapter 12 examines the nature of computation, and some important results from the theory of computation. It introduces models of computing agents, and explains how Turing machines are good models of computing agents, and also capture the features of algorithms. It describes how Turing machines work, and the thesis that Turing machines, as a model, capture all algorithms. The chapter ends with a discussion of unsolvable problems: in particular, the halting problem.
Teaching Tips

12.1 Introduction
1. Introduce the idea that we can study the nature of algorithms, and that there are problems we can characterize that have no algorithmic solution.
2. We can strip away extraneous details of a computing agent to find its fundamental features, and we can build a model of a computing agent with which to study what computing can and cannot do.
12.2 What is a Model?
1. List the features of a model: it captures the essence of the real thing, it may differ in scale (physical size, time frame) from the real thing, it omits some details of the real thing, and it lacks some functionality of the real thing. Give details of different kinds of models: mathematical, physical, computational.
2. Models may be used to learn about the real thing: changes to the model produce effects transferrable to the real thing. Models may be safer to work with, or more convenient (in time scale or size) to work with than the real thing. Models may be used to predict the behavior of existing systems, and to prototype systems before building them.
12.3 A Model of a Computing Agent
1. Introduce the idea of a computing agent, and collect a list of features of computing agents. Discuss the need to separate the essential features from the unnecessary details. For example, computers have monitors, keyboards, and mice, but those are not necessary to be a computer (talk about embedded computers).
2. Any computing agent must have the ability to: take in input (the form does not matter); store and retrieve information from memory; take actions based on algorithm instructions, where instructions may refer to the present state, including memory, and current input and produce output in some form. 

3. Introduce the term Turing machine, and describe how it fits the essential features of a computing agent. A Turing machine has a one-dimensional tape of infinite extent, used for input, memory, and output. Introduce the term tape alphabet to describe the set of symbols that may be written on the tape. At any given moment, the Turing machine is located at one particular cell of the tape. The machine can read the symbol written in that cell, write a symbol to the cell, and move one cell to the left or right. Turing machines also have a finite number of internal states. 
4. Introduce the term Turing machine instructions. Turing machines perform just one kind of operation. Given the current symbol on the tape and the current state, the machine can transition to a new state, overwrite the symbol with a new one, and move one cell to the left or right. Turing machine instructions may be encoded as a 5-tuple: (current state, current symbol, next symbol, next state, and move direction).
	Teaching Tip 


	If students are to really understand Turing machines, building and testing them is very useful. JFLAP is a free Turing machine simulator, available at: http://www.jflap.org 




5. Introduce the term Turing machine program. A program for a Turing machine is a set of instructions that tell what to do in each situation. Only one instruction is permitted for each symbol/state combination. If no instruction pertains, the machine halts. The Turing machine starts in state 1 at the start of a computation, and it is positioned on the leftmost symbol of the input.

6. Work through several examples of Turing machines, with the instructions written as 5-tuples. Ask students to identify the purpose of each machine. After several examples, ask students to walk through a new Turing machine on their own.
Quick Quiz 1
1. What are the four essential features of a computing agent?
Answer: taking input, storing and retrieving data from memory, performing actions based on input and state, and producing output
2. (True or False) A Turing machine uses its tape for input only.
Answer: False
3. List the parts of a Turing machine instruction.
Answer: current state, current symbol, symbol to write, new state, and direction of movement. 
4. Describe what the following Turing machine instruction means: (3,1,0,5,L)
Answer: if the machine is in state 3 and reads a 1 on the tape, overwrite the 1 with a 0, change to state 5, and move one cell to the left.
12.4 A Model of an Algorithm
1. Remind student of the features of an algorithm: a well-ordered collection, of unambiguous and effectively computable operations, that halts in a finite amount of time, and that produces a result. A Turing machine program fits the criteria of an algorithm.
2. The issue of Turing machines and halting is an important one; spend time going over the issue. Note that just like real programs, Turing machine programs can be written that loop infinitely, but we don’t consider those correct algorithms.

3. A Turing machine is a model of a computing agent. Because the Turing machine program is usually combined intrinsically with the machine, we consider a Turing machine with its program to be a model of an algorithm.
12.5 Turing Machine Examples
1. The goal for this section is to get students to the point where they can simulate, by hand, a simple Turing machine on a straightforward input.
2. A bit inverter takes a string of 0s and 1s, and turns every 0 into a 1, and every 1 into a 0. A Turing machine for this task needs only one state, and can simply move to the right changing each bit as it goes, until it reads a blank symbol.

3. Introduce the term state diagram, a visual representation of a Turing machine algorithm. Draw the state diagram for the bit inverter, and work through an example with it.

4. A parity bit machine takes a string of 0s and 1s, and adds an extra bit to the end of the string. The goal of the bit is to ensure that the number of 1s in the whole string (including the new one) is odd: odd parity. Give short and long examples of strings with odd and even parity, and show what would be added in each case. Note the application of parity bits to error detection with transmitted data. A Turing machine for this task must keep track of whether it has seen an odd number of 1s or an even number of 1s. It also must ensure the machine halts after changing one blank to a 0 or 1; for this it needs a third state. The machine can ignore 0s altogether. Give its state diagram, list of tuples, and work through examples.

5. Introduce the term unary representation, for representing non-negative integers. Draw students’ attention to the fact that this representation, unlike tally marks from elementary school, uses 1 to represent 0, and 11 to represent 1, and so on. A unary incrementer needs to add a 1 to the string. Show both alternative implementations to solve this problem, and work through examples. Demonstrate that we can still evaluate Turing machine algorithms for efficiency.
6. Unary addition takes in two strings of 1s separated by a blank, and leaves the sum of the two numbers, in unary, on the tape. Develop the require steps: filling in the blank with a 1 and removing two other 1s from somewhere, and then complete the state diagram.
Quick Quiz 2
1. In order to solve the odd parity bit problem, the Turing machine needed ___ states. 

Answer: 3
2. (True or False) Turing machines can implement arithmetic.
Answer: True
3. (True or False) A Turing machine may use states to distinguish between blanks it needs to overwrite and blanks that indicate it should halt.
Answer: True
12.6 The Church-Turing Thesis
1. Introduce the Church-Turing thesis, and explain its claim that every symbol manipulation task that has an algorithmic solution can be carried out by a Turing machine. Explain that a thesis is something that cannot be proven, but that no one has disproven it in all the years of trying.
2. Introduce the terms computability, and uncomputable or unsolvable problems. A problem may be shown to be computable by giving a Turing machine for it. Showing something is not computable requires more work.
12.7 Unsolvable Problems
1. Define the halting problem. Explain carefully the idea of taking Turing machine instructions as input to an algorithm. A key idea is that we can encode the instructions as strings of binary bits. Use unary numbers to represent the states and symbols (assign a number to each one and use the unary representation of the number). Use 1 to mean R and 11 to mean L, and separate the parts of an instruction by 0s. For example, (3, 1, 0, 5, L) could be encoded as 01111011010111111010. A set of instructions may be encoded by concatenating each instruction with the others.
2. Introduce the term proof by contradiction. State that we will assume the opposite of what we want to prove, and then show that a consequence of the assumption is a contradiction. Go through the steps of the halting problem proof: 
a. Assume P is a Turing machine that solves the halting problem. The input to P is an encoding of a set of Turing machine instructions, and an encoding of the input for that machine. If P leaves a single 1 on the tape, then the input instructions halt on the given input. Otherwise P will leave a single 0 on the tape.

b. Modify P to make machine Q. Q acts just like P, except when Q reaches the state where P was to write a 1 and halt, Q goes into an infinite loop. 
c. Build a machine S that first copies its input on the tape, and then runs just like Q.
d. What happens when S is run on its own encoding? –A contradiction!

	Teaching Tip 


	If students find the halting problem proof difficult to understand in terms of Turing machines, show them that the same proof pertains if we assume algorithm P exists, written in pseudocode or a programming language they know. Then write write Q and S in pseudocode or that language.




3. Note that this proof only applies to the most general problem. For some specific Turing machine, algorithm, or program, the halting problem may be answered. The proof states that no one algorithm exists that can answer the halting problem for every possible algorithm.
Quick Quiz 3
1. (True or False) The halting problem pertains to whether a Turing machine halts when given no input on its tape.

Answer: False (it is more general than that)
2. To prove the halting problem, we must use the proof technique called: _____________.
Answer: proof by contradiction
Class Discussion Topics

1. As a computing agent, in what ways is a Turing machine different from a human being? Are any features Turing machines lack important for understanding what humans can express or compute algorithmically?
2. Think about a variation on a Turing machine that does not have an infinite tape. Instead, its tape is N cells long. Can you think of problems such a machine could not solve, that could be described algorithmically?
3. What does it mean for the field of computer science that there are unsolvable problems?
Additional Projects
1. Given a Turing machine program described as a set of 5-tuples or a state diagram, determine the result of the program on a set of provided inputs, and describe the function implemented by the program.

2. Working with a partner, design a Turing machine that can compute one of these operations:

a) The unary decrement operation

b) An operation to check if a binary input string represents an unsigned integer that is even or odd

c) An operation to see if the input string consists of some number of 0s followed by some number of 1s (excluding strings like 0011100 and 1100011010).

Additional Resources

1. An online biography of Alan Turing: http://www.turing.org.uk/bio/part1.html 
2. An online biography of Alonzo Church: http://www.gap-system.org/~history/Biographies/Church.html 
3. Many physical implementations of Turing machines are demonstrated online. Here are two: http://www.youtube.com/watch?v=E3keLeMwfHY&feature=related and http://www.youtube.com/watch?v=cYw2ewoO6c4&feature=related 
Key Terms
· Church-Turing thesis: The thesis that if there exists an algorithm to do a symbol manipulation task, then there exists a Turing machine to do that task.
· Computability: That which can be done by symbol manipulation algorithms.

· Halting problem: Decide, given any collection of Turing machine instructions together with any initial tape contents, whether that Turing machine will ever halt if started on that tape.
· Proof by contradiction: Assume the opposite of what you want to prove and follow the logical consequences until you reach a contradiction, thereby showing that your assumption is incorrect.
· Recognizer: A Turing machine that decides whether the string of characters initially on its tape matches a certain pattern.
· State diagram: A visual representation of a Turing machine algorithm.

· Tape alphabet: The allowable symbols that can be written on a Turing machine tape.

· Turing Award: The most prestigious technical award given by the Association for Computing Machinery; it is for “contributions of lasting and major technical importance to the computer field.”
· Turing machine: A theoretical model of a computing agent in which symbols are written in cells of a hypothetical infinite tape and are read and changed by a read/write unit according to the input symbol, the state of the read/write head, and the set of rules for the Turing machine.
· Turing machine instruction: Given the current tape symbol and the state of the read/write unit, it describes the symbol to write, the next state, and the direction of movement of the read/write unit.

· Turing machine program: A set of Turing machine instructions that allows a Turing machine to carry out a certain task.

· Unary representation: Using only one symbol.

· Uncomputable/unsolvable: A problem that cannot be solved by an algorithm.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

