Invitation to Computer Science, 7th Edition

11-6

Chapter 11
Compilers and Language Translation
A Guide to this Instructor’s Manual:

We have designed this Instructor’s Manual to supplement and enhance your teaching experience through classroom activities and a cohesive chapter summary.
This document is organized chronologically, using the same headings that you see in the textbook. Under the headings you will find: lecture notes that summarize the section, Teaching Tips, Class Discussion Topics, and Additional Projects and Resources. Pay special attention to teaching tips and activities geared towards quizzing your students and enhancing their critical thinking skills.
In addition to this Instructor’s Manual, our Instructor’s Resources also contain PowerPoint Presentations, Test Banks, and other supplements to aid in your teaching experience.
	At a Glance


Instructor’s Manual Table of Contents

· Overview

· Teaching Tips and Quick Quizzes
· Class Discussion Topics

· Additional Projects

· Additional Resources

· Key Terms
	Lecture Notes


Overview

Chapter 11 describes how computers translate programs from high-level programming languages into assembly language or byte code. It describes the phases of a compiler, including lexical analysis, parsing, code generation, and optimization. The chapter introduces Backus-Naur Form (BNF) for describing the grammatical structure of a programming language, and shows how to use it to parse programs into parse trees. It explains a set of common optimizations performed on compiled code.
Teaching Tips

11.1 Introduction
1. Describe the importance of compilers, as they translate high-level languages into executable code. Compilers must be correct, efficiency, and concise. Modern IDEs also provide tools for writing, analyzing, and debugging code.
11.2 The Compilation Process
1. The four phases of a compiler are lexical analysis, parsing, semantic analysis and code generation, and code optimization. Explain what each phase takes as input and what it produces.

2. Introduce the terms lexical analysis, lexical analyzer, and scanner. Explain what a token is. Work through examples to demonstrate the text that a scanner starts with, and the stream of tokens it produces. Explain how certain tokens have types that are important: symbols, numbers, etc.
3. Introduce the terms parse tree, parsing, parser, and syntax. Emphasize that grammatical structure has to do with parts of speech, types of tokens, and not with meaning. Introduce the term Backus-Naur Form (BNF), used to define of rules (or productions) belonging to a grammar. Introduce the terms terminal and nonterminal, the goal symbol, and the null string. Emphasize the importance of met symbols that are part of BNF, not the generated grammar. 
4. Demonstrate how BNF rules work using several simple examples. Ask students to determine which statements is grammatical using each grammar. Construct parse trees labeled with the rule applied to each parsing step. Introduce the term look-ahead parsing algorithms for algorithms that look beyond the current symbol to choose the right rule to apply.
	Teaching Tip 


	Students will understand how grammars work best by trying them out. Include a class activity where students are given a grammar and build parse trees for statements. Also ask groups of students to develop new rules that extend a language, and then swap the rules among groups and test them.



5. Discuss programming language constructs that allow repetitions, including arithmetic, nesting conditionals or loops. Introduce the term recursive definition, for rules that handle such constructs. Discuss the problem of rules that are ambiguous.
6. Emphasize the difference between syntax and semantics. Introduce the terms semantic analysis and semantic records, and note that many problems with semantics in programming languages stem from inappropriate types. Introduce the term code generation. Note that both phases can be done at the same time, or they could be done one after the other. 

7. Work through examples of semantic analysis and code generation on parse trees from grammars seen earlier.
8. Introduce the term code optimization, and explain its historical importance in producing efficient assembly code. Introduce the terms visual development environments and online debuggers to explain the modern complexities that improve the programmer’s workflow, rather than the code produced.
9. Introduce the term local optimization, and examples of it: constant evaluation, strength reduction, and eliminating unnecessary operations. If possible, save examples of code produced by hand with code generation, and use them to illustrate the effect of local optimization.

10. Introduce the term global optimization, and give examples of the kind of analysis it requires.

Quick Quiz 1
1. The phase of compilation that checks if a program is grammatical is called ________________. 

Answer: parsing or syntactic analysis
2. (True or False) Lexical analysis must record a type for some tokens.
Answer: True
3. A grammar is ________________ when there are two different parse trees for the same statement. 

Answer: ambiguous
4. A BNF rule that captures repeating structures uses a _____________.
Answer: recursive definitions
5. The phase of a compiler that outputs statements in assembly language is called ______________.
Answer: code generation
6. ____________ Optimization occurs when the optimizer looks at only a few lines of assembly code at a time.
Answer: local
7. Modern compiler designers also must worry about providing additional tools to programmers, including ________________.
Answer: visual development environments, online debuggers, or other similar answers
11.3 Conclusion
1. Real-world compiler design is much more complex than seen here.

2. High-level languages require elaborate systems to translate their programs into efficient, concise, correct assembly language programs.
Class Discussion Topics

1. Break a given English text into tokens, assigning part-of-speech types to each token as needed. Think about where punctuation gets complicated: are there punctuation marks that could mean different things?
2. Which phase of the compiler seems easiest to you? Which seems most difficult? Why?
Additional Projects
1. Given a grammar by your instructor, determine what tokens would be required by that grammar. List them, along with any token types it would need.
2. In a group of 2-3 students, develop new BNF rules to describe a “repeat-until” loop. This form starts with the keyword “repeat”, and then has a block of statements, and then ends with the word “until” and a Boolean expression. Assume that you have grammar rules for statement blocks and Boolean expressions.

3. Given some assembly code by your instructor, find opportunities for local optimization, using the three methods described in the book. Note that making one optimization may create an opportunity to apply another optimization. How short can you make the code?
Additional Resources

1. A general tutorial on BNF and EBNF: http://www.garshol.priv.no/download/text/bnf.html 
2. A page that demonstrates parsing algorithms: http://ag-kastens.upb.de/lehre/material/uebi/parsdemo/ 
3. A summary list of groups doing research in compilers: http://www.cs.cmu.edu/~mleone/language/projects.html 
Key Terms
· Ambiguous (grammar): A grammar that allows the construction of two or more distinct parse trees for the same statement.
· BNF (Backus-Naur Form): The most widely used notation for representing the syntax of a programming language.
· Code generation: A second pass over the parse tree, not to determine correctness but to produce the translated code.
· Code optimization: Polishing and fine-tuning code so that it runs a little faster or occupies a little less memory.
· Constant evaluation: Arithmetic expressions are fully evaluated at compile time, if possible, rather than at execution time.
· Eliminating unnecessary operations: Instructions that are correct, but not necessary, are discarded.
· Global optimization: The compiler looks at large segments of the program, not just small pieces, to determine how to improve performance.
· Goal symbol: In parsing, the final nonterminal; the nonterminal object that the parser is trying to produce as it builds the parse tree.
· Grammar: The collection of all rules that define the syntax of a programming language.
· Lexical analysis: The process of grouping individual characters into grammatical units called tokens.

· Lexical analyzer/scanner: A program that performs lexical analysis.

· Local optimization: The compiler looks at a very small block of instructions, typically from one to five, and tries to determine how it can improve the efficiency of this local code block without regard for what instructions come before or after.
· Look-ahead parsing algorithm: A parsing algorithm that examines the upcoming tokens to see what would happen if a certain choice is made. It does this to try to avoid making incorrect choices.
· Met symbol: A symbol of one language, such as BNF, that is used to describe the characteristics of another language.

· Natural language understanding: Getting computers to understand and use natural language.

· Nonterminal: In parsing, not an actual element of the language but an intermediate grammatical category used to help explain and organize the language.
· Null string: A string that is empty or contains nothing.

· Online debuggers: web-based tools to help programmers locate and correct errors.
· Parse tree: A structure that starts from the individual tokens in a statement and shows how these tokens can be grouped into predefined grammatical categories.
· Parser: A program that parses high-level language statements.
· Production: Another term for rule.

· Recursive definition: The definition of a grammatical element in terms of itself.

· Rule: A description of how to group syntactic elements in a programming language to produce a new grammatical construct.
· Semantic analysis: A pass over the parse tree to determine whether all branches of the tree are semantically valid.
· Semantic record: A data structure that stores information about a nonterminal, such as the actual name of the object and its data type.
· Strength reduction: Slow arithmetic operations are replaced with faster ones.
· Syntax: The rules for exactly how programming statements must be written; the grammatical structure of a programming language.
· Terminal: In parsing, an actual token of the language recognized and returned by a scanner.
· Token: Syntactical unit that is treated as a single, indivisible entity for the purposes of translation.
· Visual development environment: Software development tools that use graphics and video to let the programmer see what is happening.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

