Invitation to Computer Science, 7th Edition

10-7

Chapter 10
The Tower of Babel
A Guide to this Instructor’s Manual:

We have designed this Instructor’s Manual to supplement and enhance your teaching experience through classroom activities and a cohesive chapter summary.
This document is organized chronologically, using the same headings that you see in the textbook. Under the headings you will find: lecture notes that summarize the section, Teaching Tips, Class Discussion Topics, and Additional Projects and Resources. Pay special attention to teaching tips and activities geared towards quizzing your students and enhancing their critical thinking skills.
In addition to this Instructor’s Manual, our Instructor’s Resources also contain PowerPoint Presentations, Test Banks, and other supplements to aid in your teaching experience.
	At a Glance


Instructor’s Manual Table of Contents

· Overview

· Teaching Tips and Quick Quizzes
· Class Discussion Topics

· Additional Projects

· Additional Resources

· Key Terms
	Lecture Notes


Overview

Chapter 10 discusses why hundreds of different programming languages have been developed, emphasizing the special features of each language. Those special features are designed to simplify certain kinds of problem solving. A wide range of languages within the procedural paradigm are described, along with the problems they are particularly good at solving. The chapter introduces special-purpose languages, and other paradigms, including functional, logic, and parallel languages. The chapter provides a set of language features that may differ from one language to another, and that provide a framework for comparing languages.
Teaching Tips

10.1 Why Babel?
1. Introduce the question of why multiple programming languages exist, and use the metaphor of models of automobiles to illuminate the answer. Each language has tasks it performs well (give examples like complex computations on real numbers, detailed page layout, database interaction). 
2. Computer scientists and engineers choose a language based on (1) the tasks to be done and (2) the philosophical approach to computation that best fits the task and the person.
	Teaching Tip 


	To enliven this material, assign students to small groups and have each group research one of the chapters’ languages, presenting a summary to the class.




10.2 Procedural Languages
1. List and discuss the key features that identify procedural languages: step-by-step instructions that describe manipulations of data in memory locations. Use the metaphor of the romance language family.
2. Plankalkül was an early language designed for the German computer in WWII; language was never implemented, but represents the earliest attempt to design a high-level language.
3. FORTRAN was developed in the mid-1950s by Backus at IBM. Designed for mathematical computations, particularly floating-point. It contained control structures close to assembly language: GO TO statements. Introduce the term external libraries and note that FORTRAN was the first to support them.

	Teaching Tip 


	Side-by-side comparison of the same algorithm written in different languages can be very helpful here. Consider choosing one of the programs from Chapter 9 and providing a version in each language you intend to feature.




4. COBOL was developed around 1959 by Hopper of the U.S. Navy. COBOL focused on business applications, such as inventory control and generating reports. Introduce the term legacy code, and talk about the Y2K issues that arose from code outliving its designers’ expectations.
5. C was developed in the early 1970s by Ritchie at AT&T Labs. It was designed to interact closely with the operating system, for system programming. Discuss the impact of its close connection with the UNIX operating system, and its mixture of high and low-level constructs. C allows a programmer to access pointers, memory addresses, directly. Introduce the term device driver, as an example of system software that benefits from low-level access as well as high-level features.
6. C++ was developed in the early 1980s by Stroustrup at AT&T Labs. It is explicitly a superset of C. C++ is an object-oriented language, very popular for software development.

7. Ada was developed in the mid 1970s by a team from all the U.S. armed services. Designed as a common language for defense contractors. It supports multiprocessing, and enforces good software engineering practices. It is popular in the transportation industry because of its tools for ensuring safety and reliability.

8. Java was developed in the early 1990s by Sun Microsystems. It was focused particularly on web development. Introduce the terms applications and applets, and how Java implements each. Discuss its emphasis on platform independence and reliability. Introduce the terms bytecode and Java bytecode interpreter.
9. Python was developed in the early 1990s by van Rossum at Stichting Mathematisch Centrum. Introduce the term open source language, and why it is different from earlier languages in this chapter. Early applications were for system administrator tasks. The fact that it is easy to learn and use has made it popular.

10. C# was developed in 2000 by Microsoft. It was intended as a successor to C++, but is not backward compatible. It introduced features to be more secure than C++, including garbage collection. Introduce the Microsoft .NET Framework, which C# and other languages can use: tools for developing software for Windows or the web. Introduce the Microsoft Intermediate Language (MSIL) and its use by the just-in-time (JIT) compiler.
Quick Quiz 1
1. ______ is an early procedural language intended for business applications.
Answer: COBOL
2. (True or False) A procedural language must support a GO TO statement.
Answer: False
3. (True or False) Python is an open-source programming language.
Answer: True
4. Which language was originally developed as a common language for defense contractors?
Answer: Ada
5. List two special features or purposes of Java.
Answer: Any two of: platform independence, emphasis on web applications and applets, more secure than C++, object oriented
10.3 Special-Purpose Languages
1. SQL is a query language for accessing information in databases. Provide examples of SQL queries, and how web front ends are built to hide the details of SQL from users.
2. HTML is a language for describing the formatting and layout of web pages. Tags are written with angled brackets: <p> and </p>. Tags indicate parts of a document, font and font size, paragraphs, images, and tables. Show students how to view the HTML source from a web browser, and look together at some sample webpages.
3. JavaScript is a variant of Java that can be embedded in a webpage. Introduce the term event handlers, when bits of JavaScript are invoked by user actions on a webpage.

	Teaching Tip 


	Refer students to this tutorial about HTML: http://www.w3schools.com/html/ 



10.4 Alternative Programming Paradigms
1. Introduce the term paradigm, and explain its use for philosophical approaches to programming languages. Describe the three alternative paradigms in this chapter: functional, logic, and parallel. These paradigms will make more sense if you can show programs actually running: consider getting interpreters or compilers for the languages here.
2. Introduce the term functional programming language. Emphasize that a function is an algorithm that returns a value. Show examples from the language Scheme. Introduce the term applicative languages. Discuss list processing in Scheme, and the peculiarly-named list operators: car and cdr. Introduce the term recursive and work through an example of recursion in action. Introduce the term side effect.
3. Introduce the term Logic programming languages, or declarative languages. These languages use logical inference to respond to queries about facts in the program’s storehouse. Introduce the language Prolog, and emphasize that it can be used for many purposes, but artificial intelligence is its main purpose. Demonstrate facts, rules, and queries in Prolog (free Prolog interpreters are easily available). Introduce the terms knowledge base, inference engine, and modus ponens to explain how Prolog works.
4. Describe large-scale problems that require parallel processing to compute. Introduce the term multicore computing, as another current application. Give code examples from the SIMD model of processing, and compare to examples from the MIMD model. Introduce the term divide-and-conquer model, to describe a common approach to parallel algorithms, and apply to the phone book example.

Quick Quiz 2
1. Scheme and LISP are examples of the ____________ paradigm.

Answer: functional
2. (True or False) Logic programming languages are typically used for large-scale scientific problems.
Answer: False
3. (True or False) The divide-and-conquer model can produce efficient parallel algorithms.
Answer: True
10.5 New Languages Keep Coming
1. Go is a new language developed by Google to combine ease of use of languages like Python with efficiency and safety. It is an open source language, used for systems programming and multicore programming.
2. F# is a new language developed by Microsoft. It is a functional language designed for list process, but integrated into the Microsoft .NET Framework.
3. Swift was announced by Apple in 2014. Explain that it was designed for building apps on the iOS and OS X operating systems (e.g., iPhone, iPad, Mac). It is similar to Objective-C, but faster and safer.

Class Discussion Topics

1. Examine the same algorithm implemented in several different programming languages (provided by instructor). Can you identify the language paradigm being used? Can you identify the language? List the similarities and differences between the programs. Can you align instructions or sets of instructions from different programs?
2. What are the pros and cons of open source versus proprietary programming languages? Consider the situation from the perspective of a language designer, a programmer using the language, and a business that needs to hire someone to write a program for it.
Additional Projects
1. Working with a team, create a webpage by writing HTML that focuses on an extracurricular interest of one of the team members.
2. Create a small Prolog knowledge base that describes your family relationships: parents, children, uncles, aunts, etc. Try to create general rules that describe when someone is an uncle of someone else. Try out your facts and rules in a Prolog interpreter.

3. Pick a programming language from a list (provided by your instructor), and research the language online. What paradigm does it fit into? What is the language mainly intended to do? What are its features?
Additional Resources

1. Listing of “hello world” programs in different languages: http://en.wikibooks.org/wiki/Computer_Programming/Hello_world 
2. HTML tutorial: http://www.htmltutorialforbeginners.com/ 
3. A free Scheme system: http://racket-lang.org/ 
4. A free Prolog interpreter: http://www.swi-prolog.org/ 

Key Terms
· Applet: (Java) A small application, designed to run from webpages.
· Application: (Java) A complete standalone program that resides and runs on a self-contained computer.
· Applicative language: Another name for a functional programming language, so called because it repeatedly applies functions.
· Bytecode: (Java) Low-level code that can be easily translated into any specific machine language.
· Declarative language: Another name for a logic programming language, so called because its programs consist of declarations of fact rather than commands.
· Device driver: A program to interact with an I/O device.

· Divide-and-conquer model: A problem-solving approach that successively partitions the problem into smaller and smaller parts; used in MIMD processing to divide tasks among multiple processors.
· Event handler: Code that responds to a particular "event," often a user action.
· External library: A well-written, efficient, and thoroughly tested code module that is separately compiled and then drawn on by any program that wishes to use its capabilities.
· Functional programming languages: Views every task in terms of functions. In this context, function means something like a mathematical function—a recipe for taking an argument (or possibly several arguments) and doing something with them to compute a single value.
· Garbage collection: Reclaiming memory no longer needed by a program.

· Inference engine: Software that is supplied as part of the compiler or interpreter for a logic programming language, which can access a knowledge base, and contains its own rules of deductive reasoning based on symbolic logic. Also called a query interpreter.
· Java bytecode interpreter: Software that translates bytecode into machine language and executes it.
· Just In Time (JIT) compiler: Part of the .NET framework that compiles MSIL code into object code on the user's machine.
· Knowledge base: Facts and rules about a certain domain of interest.

· Legacy code: Old, but still-running, programs.

· Logic programming language: A language that, based on facts that are asserted to be true, can infer or deduce other facts.

· Microsoft .NET Framework: A collection of tools for software development designed so that traditional text-based applications, GUI applications, and web-based programs can all be built with equal ease.
· Microsoft Intermediate Language (MSIL): Low-level code for a .NET language program that can be easily translated into any specific machine language.
· Modus ponens: A rule of deductive reasoning that states that “if A then B” together with “A” must result in “B.”
· Multicore computing: In which two or more processors are packaged together on a single integrated circuit.
· Open source: Software whose source code is freely available and may be used, distributed, or modified by anyone.
· Paradigm: A model or mental framework for representing or thinking about something.
· Recursive: Something that is defined in terms of "smaller versions" of itself.
· Side effect: Occurs when a function, in the course of acting on its argument values to produce a result value, also changes other values that it has no business changing.
· Tags: Special characters in HTML and other markup languages that achieve formatting, special effects, and links to other documents or webpages.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

