C8814_chapter java.gxd 1/17/15 5:22 PM Page 1 4@7
\uaml'nrlllLLuL\\\\\'i“\\\\\ S i ST T (O —

Programming in Java

Online module to accompany Invitation to Computer Science, 7" Edition ISBN-10:
1305075773; ISBN-13: 9781305075771 (Cengage Learning, 2016).

1. Introduction to Java
1.1 A Simple Java Program
1.2 Creating and Running a Java Program
2. \Virtual Data Storage
3. Statement Types
3.1 Input/Output Statements
3.2 The Assignment Statement
3.3 Control Statements
4. Another Example
5. Managing Complexity
5.1 Divide and Conquer
5.2 Using Methods
5.3 Writing Methods
6. Object-Oriented Programming
6.1 What Is It?
6.2 Java and OOP
6.3 One More Example
6.4 What Have We Gained?
7. Graphical Programming
7.1 Graphics Hardware
7.2 Graphics Software
8. Conclusion
EXERCISES

ANSWERS TO PRACTICE PROBLEMS

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 2 $

N

~

1 Introduction to Java o

Hundreds of high-level programming languages have been developed; a fraction
of these have become viable, commercially successful languages. There are
a half-dozen or so languages that can illustrate some of the concepts of a
high-level programming language, but this module uses Java for this purpose.

Our intent here is not to make you an expert Java programmer—any more
than our purpose in Chapter 4 was to make you an expert circuit designer.
Indeed, there is much about the language that we will not even discuss. You
will, however, get a sense of what programming in a high-level language is like
and perhaps see why some people think it is one of the most fascinating of
human endeavors.

B> 1.1 ASimple Java Program

Figure 1 shows a simple but complete Java program. Even if you know nothing
about the Java language, it is not hard to get the general drift of what the
program is doing.

Someone running this program (the user) could have the following dialogue
with the program, where boldface indicates what the user types:

Enter your speed in mph: 58

Enter your distance in miles: 657.5

At 58 mph, it will take 11.336206896551724 hours
to travel 657.5 miles.

To aid our discussion of how the program works, Figure 2 shows the same pro-
gram with a number in front of each line. The numbers are there for reference
purposes only; they are not part of the program. Lines 1-3 in the program of
Figure 2 are Java comments. Anything appearing on a line after the double
slash symbol (//) is ignored by the compiler, just as anything following the
double dash (--) is treated as a comment in the assembly language programs
of Chapter 6. Although the computer ignores comments, they are important
to include in a program because they give information to the human readers
of the code. Every high-level language has some facility for including com-
ments, because understanding code that someone else has written (or under-
standing your own code after some period of time has passed) is very difficult
without the notes and explanations that comments provide. Comments are
one way to document a computer program to make it more understandable.

2 Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 3 CE

FIGURE|1
A Simple Java Program //Computes and outputs travel time
//for a given speed and distance
//Written by J. Q. Programmer, 6/15/16
import java.util.x*;
public class TravelPlanner
{
public static void main(String[] args)
{
int speed; //rate of travel
double distance; //miles to travel
double time; //time needed for this travel
Scanner inp = new Scanner(System.in); //to read input
System.out.print("Enter your speed in mph: ");
speed = inp.nextInt();
System.out.print("Enter your distance in miles: ");
distance = inp.nextDouble();
time = distance/speed;
System.out.println("At " + speed + " mph, it will take "
+ time + " hours ");
System.out.println("to travel " + distance + " miles.");
}
b
FIGURE|2
The Program of Figure 1 (line 1. //Computes and outputs travel time
numbers added for reference) 2. //for a given speed and distance
3. //Written by J. Q. Programmer, 06/15/16
4.
5. import java.util.*;
6. public class TravelPlanner
7. {
8. public static void main(String[] args)
9, {
10. int speed; //rate of travel
1l double distance; //miles to travel
12 double time; //time needed for this travel
13. Scanner inp = new Scanner(System.in); //to read input
14.
15. System.out.print("Enter your speed in mph: ");
16. speed = inp.nextInt();
176 System.out.print("Enter your distance in miles: ");
18. distance = inp.nextDouble();
19.
20. time = distance/speed;
21.
220 System.out.println("At " + speed + " mph, it will take "
236 + time + " hours ");
24. System.out.println("to travel " + distance + " miles.");
25. 3
26. }

1 Introduction to Java ‘ 3

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter_ java.gxd

1/17/15 5:22 PM Page 4

Java was developed at Sun Microsystems, Inc., but its birth
as a full-fledged programming language was almost an
accident. In early 1991, Sun created a team of top-notch
software developers and gave them free rein to do whatever
creative thing they wanted. The somewhat secret “Green
team” isolated itself and set to work mapping out a strategy.
Its focus was on the consumer electronics market. Televi-
sions, VCRs, stereo systems, laser disc players, and video
game machines all operated on different CPUs. Over the next
18 months the team worked to develop the graphical user
interface (GUI), a programming language, an operating sys-
tem, and a hardware architecture for a handheld remote-con-
trol device called the *7 that would allow various electronic
devices to communicate over a network. In contrast to the
high-end workstations that were a Sun hallmark, the *7 was
designed to be small, inexpensive, easy to use, reliable, and
equipped with software that could function over the multiple
hardware platforms of the consumer electronics market.

Armed with this technology, Sun went looking for a
business market but found none. In 1993, Mosaic—the

first graphical Internet browser—was created at
the National Center for Supercomputing Applications, and
the World Wide Web began to emerge. This development
sent the Sun group in a new direction where their experi-
ence with platform independence, reliability, security, and
GUIs paid off: They wrote a Web browser.

The programming language component of the *7 was
named Oak, for a tree outside language developer James
Gosling’s window. Later renamed Java, the language was
used to code the Web browser. The Web browser was
released in 1995, and the first version of the Java pro-
gramming language itself was released in 1996. Java
gained market share among programming languages at
quite a phenomenal rate. Sun released several versions of
Java, each succeeding version with increased capabilities
and features. Oracle Corporation bought out Sun Microsys-
tems in 2010, but continues to support Java language
development.

The comments in lines 1-3 of Figure 2 describe what the program does plus
tell who wrote the program and when. These three comment lines together
make up the program’s prologue comment (the introductory comment that
comes first). A prologue comment is always a good idea; it's almost like the
headline in a newspaper, giving the big picture up front.

Blank lines in Java programs are ignored and are used, like comments, to
make the program more readable by human beings. In our example program,
we've used blank lines (lines 4, 14, 19, 21) to separate sections of the
program, visually indicating groups of statements that are related.

Line 5 is an import statement asking the linker to include object code from
a Java library or package. Line 6 is a class header, which announces that a class
is about to be defined. The class is named TravelPlanner, and the curly braces at
lines 7 and 26 mark the beginning and end of this class definition. All Java code
(except for comments and import statements) must be either a class header or
inside a class definition. The word “public” in line 6 denotes that the TravelPlan-
ner class is available to any other program that might want to make use of it.

We will have much more to say about classes later. For now, just think of
a class as a collection of sections of code called methods that are able to
perform various related services. In the TravelPlanner class, there is only one
method, the main method. The service it performs is to compute and write
out the time to travel a given distance at a given speed. Line 8,

public static void main(String[] args)

is the header for the main method. It is not necessary to understand this
somewhat obscure code; just remember that every Java program must have a

4 Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 5 $

main method and that all main methods start out exactly this way. The curly
braces at lines 9 and 25 enclose the main method body, which is the heart of
the sample program. Lines 10-12 are declarations that name and describe the
items of data that are used within the main method. Descriptive names—
speed, distance, and time—are used for these quantities to help document
their purpose in the program, and comments provide further clarification.
Line 10 describes an integer quantity (type “int”) called speed. Lines 11 and
12 declare distance and time as real number quantities (type “double”). A real
number quantity is one containing a decimal point, such as 28.3, 102.0, or
-17.5. Line 13 declares inp as an object of the Scanner class that will be used
to collect input from the user; we'll explain this in more detail later.

Lines 15-18 prompt the user to enter values for speed and distance and
store those values in speed and distance. Line 20 computes the time required to
travel this distance at this speed. Finally, lines 22-24 print the two lines of
output to the user’s screen. The values of speed, time, and distance are inserted
in appropriate places among the strings of text shown in double quotes.

You may have noticed that most of the statements in this program end
with a semicolon. A semicolon must appear at the end of every executable
Java instruction, which means everywhere except at the end of a comment or
at the end of a class header such as

public class TravelPlanner
or a method header such as
public static void main(String[] args)

Java, along with every other programming language, has specific rules of
syntax—the correct form for each component of the language. Having a
semicolon at the end of every executable statement is a Java syntax rule. Any
violation of the syntax rules generates an error message from the compiler,
because the compiler does not recognize or know how to translate the offend-
ing code. In the case of a missing semicolon, the compiler cannot tell where
the instruction ends. The syntax rules for a programming language are often
defined by a formal grammar, much as correct English syntax is defined by
rules of grammar.

Java is a free-format language, which means that it does not matter
where things are placed on a line. For example, we could have written

time =
distance /
speed;

although this is clearly harder to read. The free-format characteristic explains
why a semicolon is needed to mark the end of an instruction, which might be
spread over several lines.

p» 1.2 Creating and Running a Java Program

Creating and running a Java program is basically a three-step process. The
first step is to type the program into a text editor. When you are finished, you

1 Introduction to Java 5

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 6 $

save the file using the same name as the class, with the file extension .java.
So the file for Figure 1 is named

TravelPlanner. java

As the second step, the program in the .java file must be compiled using a Java
compiler for your computer; for our example program, the result is a file called

TravelPlanner.class

that contains low-level code called bytecode, which is not yet object code. The
third step operates on the .class file; it finishes the translation to object code
and links, loads, and executes your program. Depending on your system, you
may have to type operating system commands for the last two steps.

Another approach is to do all of your work in an Integrated Development
Environment, or IDE. The IDE lets the programmer perform a number of tasks
within the shell of a single application program, rather than having to use a
separate program for each task. A modern programming IDE provides a text
editor, a file manager, a compiler, a linker and loader, and tools for debugging,
all within this one piece of software. The IDE usually has a GUI (graphical user
interface) with menu choices for the different tasks. This can significantly
speed up program development.

This Java exercise is just a beginning. In the rest of this chapter, we'll
examine the features of the language that will enable you to write your own
Java programs to carry out more sophisticated tasks.

JAVA COMPILERS

You can download a free Java command-line compiler from
http://www.oracle.com/technetwork/java/index. html

Look for the Java SE Development Kit (JDK). There are versions for Linux and Windows.
Apple Java came pre-installed on Mac OS X systems through OS X 10.6, but not on
later versions of the operating system.

There are also a number of Java GUI IDEs available, such as the free Dr. Java compiler
that runs on top of the JDK and can be downloaded from

www.cs.rice.edu/~javaplt/drjava/

2 Virtual Data Storage -

One of the improvements we seek in a high-level language is freedom from
having to manage data movement within memory. Assembly language does
not require us to give the actual memory address of the storage location to be
used for each item, as in machine language. However, we still have to move
values, one by one, back and forth between memory and the arithmetic logic
unit (ALU) as simple modifications are made, such as setting the value of A to
the sum of the values of B and C. We want the computer to let us use data
values by name in any appropriate computation without thinking about where

6 Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 7 $

they are stored or what is currently in some register in the ALU. In fact, we do
not even want to know that there is such a thing as an ALU, where data are
moved to be operated on. Instead, we want the virtual machine to manage the
details when we request that a computation be performed. A high-level
language allows this, and it also allows the names for data items to be more
meaningful than in assembly language.

Names in a programming language are called identifiers. Each language
has its own specific rules for what a legal identifier can look like. In Java, an
identifier can be any combination of letters, digits, and the underscore symbol
(L), as long as it does not begin with a digit. An additional restriction is that
an identifier cannot be one of the few keywords, such as “class,” “public,”
“int,” and so forth, that have a special meaning in Java and that you would
not be likely to use anyway. The three integers B, C, and A in our assembly
language program can therefore have more descriptive names, such as sublo-
tal, tax, and finalTotal. The use of descriptive identifiers is one of the greatest
aids to human understanding of a program. Identifiers can be almost arbitrar-
ily long, so be sure to use a meaningful identifier such as finalTotal instead of
something like A; the improved readability is well worth the extra typing
time. Java is a case-sensitive language, which means that uppercase letters
are distinguished from lowercase letters. Thus, FinalTotal, Finaltotal, and final-
Total are three different identifiers.

CAPITALIZATION OF IDENTIFIERS

There are two standard capitalization patterns for identifiers, particularly “multiple
word” identifiers:

camel case: First word begins with a lowercase letter, additional words begin
with uppercase letters (finalTotal)

Pascal case: All words begin with an uppercase letter (FinalTotal)

The code in this chapter uses the following convention for creating identifiers (exam-
ples included):

Simple variables - camel case: speed, time, finalTotal
Named constants - all uppercase: PI, FREEZING_POINT
Method names - camel case: myMethod, getInput
Class names - Pascal case: MyClass

Object names - camel case: myObject

The underscore character is not used except for named constants. Occasionally, however,
we'll use single capital letters for identifiers in quick code fragments.

Data that a program uses can come in two varieties. Some quantities are
fixed throughout the duration of the program, and their values are known
ahead of time. These quantities are called constants. An example of a constant
is the integer value 2. Another is an approximation to 7, say 3.1416. The inte-
ger 2 is a constant that we don't have to name by an identifier, nor do we have
to build the value 2 in memory manually by the equivalent of a .DATA pseudo-
op. We can just use the symbol “2” in any program statement. When “2” is

2 Virtual Data Storage 7/

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 8 $

first encountered in a program statement, the binary representation of the
integer 2 is automatically generated and stored in a memory location. Like-
wise, we can use “3.1416" for the real number value 3.1416, but if we are
really using this number as an approximation to s, it is more informative to
use the identifier PI.

Some quantities used in a program have values that change as the pro-
gram executes, or values that are not known ahead of time but must be
obtained from the computer user (or from a data file previously prepared by
the user) as the program runs. These quantities are called variables. For exam-
ple, in a program doing computations with circles (where we might use the
constant PI), we might need to obtain from the user or a data file the radius
of the circle. This variable can be given the identifier radius.

Identifiers for variables serve the same purpose in program statements as
pronouns do in ordinary English statements. The English statement “He will
be home today” has specific meaning only when we plug in the value for
which “He” stands. Similarly, a program statement such as

time = distance/speed;

becomes an actual computation only when numeric values have been stored in
the memory locations referenced by the distance and speed identifiers.

We know that all data are represented internally in binary form. In Chapter 4
we noted that any one sequence of binary digits can be interpreted as a whole
number, a negative number, a real number (one containing a decimal point, such
as -17.5 or 28.342), or as a letter of the alphabet. Java requires the following
information about each variable in the program:

e What identifier we want to use for it (its name)
e What data type it represents (e.g., an integer or a letter of the alphabet)

The data type determines how many bytes will be needed to store the vari-
able—that is, how many memory cells are to be considered as one memory
location referenced by one identifier—and also how the string of bits in that
memory location is to be interpreted. Java provides several “primitive” data
types that represent a single unit of information, as shown in Figure 3.

The way to give this information within a Java program is to declare each
variable. A variable declaration consists of a data type followed by a list of
one or more identifiers of that type. Our sample program used three declara-
tion statements:

int speed; //rate of travel
double distance; //miles to travel
double time; //time needed for this travel

but these could have been combined into two:

int speed; //rate of travel
double distance, time; //miles to travel and time
//needed for this travel

Where do the variable declarations go? Although the only requirement is that
a variable must be declared before it can be used, all variable declarations are

8 Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM

FIGURE/ 3

Some of the Java Primitive
Data Types

Page 9 $

int an integer quantity
double a real number
char a character (a single keyboard character, such as ‘a’)

usually collected together at the top of the main method, as in our sample
program. This also gives the reader of the code quick information about the
data that the program will be using.

What about the constant PI? We want to assign the fixed value 3.1416 to
the PI identifier. Constant declarations are just like variable declarations, with
the addition of the keyword final and the assignment of the fixed value to the
constant identifier.

final double PI = 3.1416;

Many programmers use all uppercase letters to denote constant identifiers, but
the compiler identifies a constant quantity only by the presence of final in
the declaration. Once a quantity has been declared as a constant, any attempt
later in the program to change its value generates an error message from the
compiler.

In addition to variables of a primitive data type that hold only one unit
of information, it is possible to declare a whole collection of related vari-
ables at one time. This allows storage to be set aside as needed to contain
each of the values in this collection. For example, suppose we want to record
the number of hits on a Web site for each month of the year. The value for
each month is a single integer. We want a collection of 12 such integers,
ordered in a particular way. An array groups together a collection of memory
locations, all storing data of the same type. The following statement
declares an array:

int[] hits = new int[12];

The left side of the equals sign says that hits is an array of integers; the
right side of the equals sign actually generates (new) memory locations for
12 integer quantities. The 12 individual array elements are numbered from
hits[0] to hits[11]. (Notice that a Java array counts from 0 up to 11,
instead of from 1 up to 12.) Thus, we use hits[0] to refer to the first entry
in hits, which represents the number of visits to the Web site during the
first month of the year, January. Continuing this numbering scheme,
hits[2] refers to the number of visits during March, and hits[11] to the
number of visits during December. In this way we use one declaration
to cause 12 separate (but related) integer storage locations to be set up.
Figure 4 illustrates this array.

Here is an example of the power of a high-level language. In assembly lan-
guage, we can name only individual memory locations—that is, individual
items of data—but in Java we can also assign a name to an entire collection
of related data items. An array thus allows us to talk about an entire table of
values, or the individual elements making up that table. If we are writing Java
programs to implement the data cleanup algorithms of Chapter 3, we can use
an array of integers to store the 10 data items.

2 Virtual Data Storage 9

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 10 $

FIGURE 4 hits
S A 12-Element Array hits

hits[0] hits[2] hits(11]

PRACTICE PROBLEMS

1. Which of the following are legitimate Java identifiers?
martinBradley C3P_OH Amy3 3Right double

2. Write a declaration for a Java program that uses one integer
quantity called number.

3. Write a Java statement that declares a type double constant called
TAX RATE that has the value 5.5.

4. Using the hits array of Figure 4, how do you reference the number
of hits on the Web page for August?

S~

3 Statement Types R

Now that we can reserve memory for data items simply by naming what we want
to store and describing its data type, we will examine additional kinds of pro-
gramming instructions (statements) that Java provides. These statements enable
us to manipulate the data items and do something useful with them. The instruc-
tions in Java, or indeed in any high-level language, are designed as components
for algorithmic problem solving, rather than as one-to-one translations of the
underlying machine language instruction set of the computer. Thus, they allow
the programmer to work at a higher level of abstraction. In this section we exam-
ine three types of high-level programming language statements. They are consis-
tent with the pseudocode operations described in Chapter 2 (see Figure 2.9).

Input/output statements make up one type of statement. An input
statement collects a specific value from the user for a variable within the
program. In our TravelPlanner program, we need input statements to get
the values of the speed and distance that are to be used in the computation.
An output statement writes a message or the value of a program variable to
the user’s screen. Once the TravelPlanner program computes the time required
to travel the given distance at the given speed, the output statement displays
that value on the screen.

Another type of statement is the assignment statement, which assigns a
value to a program variable. This is similar to what an input statement does,
except that the value is not collected directly from the user, but is computed
by the program. In pseudocode we called this a “computation operation.”

Control statements, the third type of statement, affect the order in
which instructions are executed. A program executes one instruction or
program statement at a time. Without directions to the contrary, instructions
are executed sequentially, from first to last in the program. (In Chapter 2 we

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 11 $

called this a straight-line algorithm.) Imagine beside each program statement
a light bulb that lights up while that statement is being executed; you would
see a ripple of lights from the top to the bottom of the program. Sometimes,
however, we want to interrupt this sequential progression and jump around in
the program (which is accomplished by the instructions JUMP, JUMPGT, and so
on, in assembly language). The progression of lights, which may no longer be
sequential, illustrates the flow of control in the program—that is, the path
through the program that is traced by following the currently executing state-
ment. Control statements direct this flow of control.

p» 3.1 Input/Output Statements

Remember that the job of an input statement is to collect from the user
specific values for variables in the program. In pseudocode, to get the value
for speed in the TravelPlanner program, we would say something like

Get value for speed

The core Java language does not provide a convenient way to collect user data
entered at the keyboard. However, a Java class, called the Scanner class, has
been written that provides an easy way to do this. Although we still have no
definition of what a “class” is, other than that it contains sections of code
called methods, the object code for useful classes is stored in code libraries. In
order to access the Scanner class code, we need to use an import statement.
The Scanner class is found in the Java “utility” library, so our TravelPlanner
program begins with

import java.util.¥*;

The * is a “wild card” designation, so the above statement asks the linker to
include object code for all of the classes in the utility library, which includes
the Scanner class. The utility library also includes other classes that we don't
need for the TravelPlanner program, but the extra object code does no harm
and keeps our import statement simple and easy to remember. The object code
gets linked into the object code for our program, so we use the Scanner class
code without ever seeing it. All we need to know is the services it provides
and how to use those services properly. This is in the same spirit of abstraction
that led to the development of high-level languages in the first place.

The Scanner class actually represents a new data type (not one of the
primitive data types such as int or double). Before we can make use of the
Scanner class methods, we must declare a variable (an object) of the Scanner
data type. The following statement in the TravelPlanner program

Scanner inp = new Scanner(System.in);

declares inp as an object of the Scanner class. There is nothing special about
the identifier inp; it suggests “input,” but any legal Java identifier could be
used here. System.in indicates that the source of the input will be the key-
board. The inp object now has access to these useful Scanner methods

nextInt() read a value of type int
nextDouble () read a value of type double

3 Statement Types

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 12 $

Finally, in the statement
speed = inp.nextInt();

the inp object uses the nextint() method to read input from the keyboard and
store it in the previously declared int variable speed. (Recall that all variables
must be declared before they can be used.)

Similarly, the statement to read in the value for distance that the user
enters at the keyboard is

distance = inp.nextDouble();
You cannot use
SomeVariable = inp.nextDouble();

if SomeVariable has been declared as type int. The Java compiler will give you
an error message about “incompatible types.”

The value of the time can be computed and stored in the memory location
referenced by time. A pseudocode operation for producing output would be
something like

Print the value of time
This could be done in Java by the following statement:
System.out.println(time);

System.out is a predefined object of a class with a println method that writes
output to the screen; in the above statement, the object is using that printin
method. But we don't want the program to simply print a number with no
explanation; we want some words to make the output meaningful.

The general form of the output statement is

System.out.println(string); or System.out.print(string);

The difference between System.out.printin and System.out.print is that after
the printin statement, the screen cursor moves to the next line where any sub-
sequent output will appear, whereas after a print statement, the cursor
remains on the same line. The string in the output statement could be empty,
as follows:

System.out.println();
This just prints a blank line, which is useful for formatting the output to make
it easier to read. The string can also be a literal string (enclosed in double

quotes). Literal strings are printed out exactly as is. For example,

System.out.println("Here’s your answer.");

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 13 $

prints
Here’'s your answer.

A string can also be composed of items joined by +, the concatenation oper-
ator. The items can be literal strings, numbers, or variables. Items that are not
themselves literal strings are converted to strings for the purposes of writing
them out. For example,

System.out.println("Give me" + 5);
prints the line
Give me5

on the screen. If we want a space between “me” and “5”, then we make that
space part of the literal string, as in

System.out.println("Give me " + 5);

If number is an integer variable with current value 5, then the same output is
produced by

System.out.println("Give me " + number);

The concatenation operator is also helpful when trying to write out a long lit-
eral string; whereas a single Java statement can be spread over multiple lines,
a line break cannot occur in the middle of a literal string. The solution is to
make two smaller substrings and concatenate them, as in

System.out.println("Oh for a sturdy ship to sail, "
+ "and a star to steer her by.");

Literal strings and variables can be concatenated together in all sorts of com-
binations, as long as the quotation marks and + signs appear in the right
places. Consider again the output statements in the TravelPlanner program:

System.out.println("At " + speed + " mph, it will take "
+ time + " hours ");
System.out.println("to travel " + distance + " miles.");

Let’s back up a bit and note that we also need to print some text information
before the input statement, to alert the user that the program expects some
input. A statement such as

System.out.print("Enter your speed in mph: ");
acts as a user prompt. Without a prompt, the user may be unaware that the

program is waiting for some input; instead, it may simply seem to the user
that the program is “hung up.”

3 Statement Types

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 14 $

Assembling all of these bits and pieces, we can see that

System.out.print("Enter your speed in mph: ");
speed = inp.nextInt();

System.out.print("Enter your distance in miles: ");
distance = inp.nextDouble();

is a series of prompt, input, prompt, input statements to get the data, and
then

System.out.println("At " + speed + " mph, it will take "
+ time + " hours ");
System.out.println("to travel " + distance + " miles.");

writes out the computed value of time along with the associated input values
in an informative message. In the middle, we need a program statement to
compute the value of time. We can do this with a single assignment state-
ment; the assignment statement is explained in the next section.

In our sample execution of the TravelPlanner program, we got the follow-
ing output:

At 58 mph, it will take 11.336206896551724 hours
to travel 657.5 miles.

This is fairly ridiculous output—it does not make sense to display the result
to 15 decimal digits. Exercise 11 at the end of this module tells you how
decimal output can be formatted to a specified number of decimal places.

S
PRACTICE PROBLEMS

1. Write two statements that prompt the user to enter an integer value
and store that value in a (previously declared) variable called quantity.

2. A program has computed a value for the variable average that
represents the average high temperature in San Diego for the month
of May. Write an appropriate output statement.

3. What appears on the screen after execution of the following
statement?

System.out.println("This is" + "goodbye"
+ ", Steve");

P> 3.2 The Assignment Statement

As we said earlier, an assignment statement assigns a value to a program
variable. This is accomplished by evaluating some expression and then writing

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 15 $

the resulting value in the memory location referenced by the program variable.
The general pseudocode operation

Set the value of “variable” to “arithmetic expression”
has as its Java equivalent
variable = expression;
The expression on the right is evaluated, and the result is then written into

the memory location named on the left. For example, suppose that 4, B, and C
have all been declared as integer variables in some program. The assignment

statements
B = 2;
C = 5;

result in B taking on the value 2 and C taking on the value 5. After execution of
A =B + C;

A has the value that is the sum of the current values of B and C. Assignment
is a destructive operation, so whatever A’s previous value was, it is gone. Note
that this one assignment statement says to add the values of B and C and
assign the result to A. This one high-level language statement is equivalent to
three assembly language statements needed to do this same task (LOAD B,
ADD C, STORE A). A high-level language program thus packs more power per
line than an assembly language program. To state it another way, whereas a
single assembly language instruction is equivalent to a single machine lan-
guage instruction, a single Java instruction is usually equivalent to many
assembly language instructions or machine language instructions, and it
allows us to think at a higher level of problem solving.

In the assignment statement, the expression on the right is evaluated
first. Only then is the value of the variable on the left changed. This means
that an assignment statement like

A=A+ 1;

makes sense. If A has the value 7 before this statement is executed, then the
expression evaluates to

7 + 1 or 8

and 8 then becomes the new value of A. (Here it becomes obvious that the
assignment instruction symbol = is not the same as the mathematical equals
sign =, because A = A + 1 does not make sense mathematically.)

All four basic arithmetic operations can be done in Java, denoted by

+ Addition

- Subtraction
* Multiplication
/ Division

3 Statement Types

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 16 $

For the most part, this is standard mathematical notation rather than the
somewhat verbose assembly language op code mnemonics such as SUBTRACT.
The reason a special symbol is used for multiplication is that X would be
confused with x, an identifier, - (a multiplication dot) doesn’t appear on
the keyboard, and juxtaposition (writing AB for A*B) would look like a single
identifier named AB.

We do have to pay some attention to data types. In particular, division
has one peculiarity. If at least one of the two values being divided is a real
number, then division behaves as we expect. Thus,

7.0/2 7/2.0 7.0/2.0
all result in the value 3.5. Howevey, if the two values being divided are both
integers, the result is an integer value; if the division doesn't “come out
even,” the integer value is obtained by truncating the answer to an integer
quotient. Thus,

7/2

results in the value 3. Think of grade-school long division of integers:

N
»—-\m:ﬂw

Here the quotient is 3 and the remainder is 1. Java also provides an operation,
with the symbol %, to obtain the integer remainder. Using this operation,

7% 2

results in the value 1.
If the values are stored in type int variables, the result is the same. For
example,

int numerator;

int denominator;

int quotient;

numerator = 7;

denominator = 2;

quotient = numerator/denominator;

System.out.println("The result of " + numerator + "/"
+ denominator + " is " + quotient);

produces the output
The result of 7/2 is 3

As soon as an arithmetic operation involves one or more real (decimal) numbers,
any integers are converted to their real number equivalent, and the calculations
are done with real numbers.

Data types also play a role in assignment statements. Suppose the expres-
sion in an assignment statement evaluates to a real number, and your program

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 17 $

tries to assign it to an identifier that has been declared as an integer. The Java
compiler gives you an error message stating that you have incompatible types.
(We mentioned that this same problem occurs if you try to use the nextDouble()
input method from the Scanner class and assign the result to an integer
variable.) In fact, the error message goes on to say that you need to do an
“explicit cast” to convert double to int. Java is saying that if you want to throw
away the noninteger part of a decimal number by storing it in an integer,
you're going to have to write code to do that. However, you can assign an
integer value to a type double variable (or input an integer value to a type dou-
ble variable). Java does this type casting (changing of data type) automatically.
This type cast would merely change the integer 3, for example, to its real
number equivalent 3.0.

This explains why we declared distance to be type double in the
TravelPlanner program. The user can enter an integer value for distance, and
Java will type cast it to a real number. But if we had declared both speed and
distance to be integers, then the division to compute time would only produce
integer answers.

You should assign only an expression that has a character value to a vari-
able that has been declared to be type char. Suppose that Letter is a variable
of type char. Then

Letter = ‘m’;
is a legitimate assignment statement, giving Letter the value of the character
‘m’. Note that single quotation marks are used here, as opposed to the double
quotation marks that enclose a literal string. The assignment

Letter = ‘47';
is also acceptable; the single quotes around the 4 mean that it is being treated
as just another character on the keyboard, not as the integer 4.

Java requires that all variables have a value before they are used. It is a
good idea to get into the habit of initializing variables as soon as they are
declared, using an assignment statement. For example, you can declare and

then initialize a variable by

int count;
count = 0;

but Java also allows you to combine these two statements into one:
int count = 0;

This statement is equivalent to the assembly language statement
COUNT: .DATA O

that reserves a memory location, assigns it the identifier COUNT, and fills it
with the value zero.

3 Statement Types

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 18 $

PRACTICE PROBLEMS

1. newNumber and next are integer variables in a Java program. Write
a statement to assign the value of newNumber to next.

2. What is the value of Average after the following statements are
executed? (Note: total and number are type int, and average is
type double.)

total = 277;
number = 5;
average = total/number;

} 3.3 Control Statements

We mentioned earlier that sequential flow of control is the default; that is, a
program executes instructions sequentially from first to last. The flowchart in
Figure 5 illustrates this, where S1, S2, . . ., Sk are program instructions (pro-
gram statements).

As stated in Chapter 2, no matter how complicated the task to be done,
only three types of control mechanisms are needed:

1. Sequential: Instructions are executed in order.

FIGURE|5
#M Sequential Flow of Control

S1

S2

Sk

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 19 $

2. Conditional: Which instruction executes next depends on some condi-
tion.

3. Looping: A group of instructions may be executed many times.

Sequential flow of control, the default, is what occurs if the program does not
contain any instances of the other two control structures. In the TravelPlanner
program, for instance, instructions are executed sequentially, beginning with
the input statements, next the computation, and finally the output statement.
In Chapter 2 we introduced pseudocode notation for conditional opera-
tions and looping. In Chapter 6 we learned how to write somewhat laborious
assembly language code to implement conditional operations and looping. Now
we'll see how Java provides instructions that directly carry out these control
structure mechanisms—more evidence of the power of high-level language
instructions. We can think in a pseudocode algorithm design mode, as we did in
Chapter 2, and then translate that pseudocode directly into Java code.
Conditional flow of control begins with the evaluation of a Boolean
condition, also called a Boolean expression, which can be either true or false.
We discussed these “true/false conditions” in Chapter 2, and we also encoun-
tered Boolean expressions in Chapter 4, where they were used to design cir-
cuits. A Boolean condition often involves comparing the values of two
expressions and determining whether they are equal, whether the first is
greater than the second, and so on. Again assuming that A, B, and C are inte-
ger variables in a program, the following are legitimate Boolean conditions:

A == (Does A currently have the value 0?)

B < (A + Q) (Is the current value of B less than the sum of the
current values of A and C?)

A != B (Does A currently have a different value than B?)

If the current values of 4, B, and C are 2, 5, and 7, respectively, then the first
condition is false (A does not have the value zero), the second condition is
true (5 is less than 2 plus 7), and the third condition is true (A and B do not
have equal values).

Comparisons need not be numeric. They can also be made between
variables of type char, where the “ordering” is the usual alphabetic ordering.
If initial is a value of type char with a current value of ‘D’, then

initial == ‘F’
is false because initial does not have the value ‘F’, and
initial < ‘P’

is true because ‘D" precedes ‘P’ in the alphabet (or, more precisely, because the
binary code for ‘D’ is numerically less than the binary code for ‘P’). Note that the
comparisons are case sensitive, so ‘F’ is not equal to ‘f’, but ‘F is less than f.

Figure 6 shows the comparison operators available in Java. Note the use of
the two equality signs to test whether two expressions have the same value.
The single equality sign is used in an assignment statement, the double
equality sign in a comparison.

Boolean conditions can be built up using the Boolean operators AND,
OR, and NOT. Truth tables for these operators were given in Chapter 4

3 Statement Types 19

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 20 $

FIGURE 6
Java Comparison Operators

FIGURE| 7
£ Java Boolean Operators

COMPARISON SyMBOL EXAMPLE ExaMPLE RESULT
the same value as == 2 == false
less than < 2<5 true
less than or equal to <= D<e=b true
greater than > 2>5 false
greater than or equal to >= 2>=5 false
not the same value as 1= 21=5 true

(Figures 4.12-4.14). The only new thing is the symbols Java uses for these
operators, shown in Figure 7.

A conditional statement relies on the value of a Boolean condition (true
or false) to decide which programming statement to execute next. If the
condition is true, one statement is executed next, but if the condition is false,
a different statement is executed next. Control is therefore no longer in a
straight-line (sequential) flow, but may hop to one place or to another.
Figure 8 illustrates this situation. If the condition is true, the statement S1 is
executed (and statement S2 is not); if the condition is false, the statement S2
is executed (and statement S1 is not). In either case, the flow of control then
continues on to statement S3. We saw this same scenario when we discussed
pseudocode conditional statements in Chapter 2 (Figure 2.4).

The Java instruction that carries out conditional flow of control is called
an if-else statement. It has the following form (note that the words if and
else are lowercase, and that the Boolean condition must be in parentheses):

if (Boolean condition)
S1;

else
S2;

Below is a simple if-else statement, where we assume that A, B, and C are
integer variables:

if (B < (A + C))
A = 2%A;
else
A = 3*A;

Suppose that when this statement is reached, the values of 4, B, and C are 2, 5,
and 7, respectively. As we noted before, the condition B < (A + () is then
true, so the statement

A = 2*A;
OPERATOR SYMBOL EXAMPLE EXAMPLE RESULT
AND && (2<5)&& (2>7) false
OR Il 2<51l@2>7) true
NOT ! I(2==15) true

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 21 $

FIGURE 8
Conditional Flow of

Control (if-else)

Condition

S3

is executed, and the value of A is changed to 4. However, suppose that when
this statement is reached, the values of 4, B, and C are 2, 10, and 7, respec-
tively. Then the condition B < (A + () is false, the statement

A = 3*A;

is executed, and the value of A is changed to 6.

A variation on the if-else statement is to allow an “empty else” case. Here
we want to do something if the condition is true, but if the condition is
false, we want to do nothing. Figure 9 illustrates the empty else case. If
the condition is true, statement S1 is executed, and after that the flow of
control continues on to statement S3, but if the condition is false, nothing
happens except to move the flow of control directly on to statement S3.

This if variation of the if-else statement can be accomplished by omitting
the word else. This form of the instruction therefore looks like

if (Boolean condition)
S1;

We could write

if (B < (A + C))
A = 2*A;

This has the effect of doubling the value of A if the condition is true and of
doing nothing if the condition is false.

3 Statement Types

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 22 $

e || FIGURE 9
S if-else with Empty else

Condition

S1

S8

It is possible to combine statements into a group by putting them within
the curly braces { and }. The group is then treated as a single statement,
called a compound statement. A compound statement can be used anywhere
a single statement is allowed. For example,

{
System.out.println("This is the first statement.");
System.out.println("This is the second statement.");
System.out.println("This is the third statement.");
}

is treated as a single statement. The implication is that in Figure 8, S1 or S2
might be compound statements. This makes the if-else statement potentially
much more powerful, and similar to the pseudocode conditional statement in
Figure 2.9.

Let’s expand on our TravelPlanner program and give the user of the pro-
gram a choice of computing the time either as a decimal number (3.75 hours)
or as hours and minutes (3 hours, 45 minutes). This situation is ideal for a
conditional statement. Depending on what the user wants to do, the program
does one of two tasks. For either task, the program still needs information
about the speed and distance. The program must also collect information to
indicate which task the user wishes to perform. We need an additional variable
in the program to store this information. Let’s use a variable called choice of

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15

FIGURE|10

The TravelPlanner Program with
| a Conditional Statement

5:22 PM Page 23

—p—

type char to collect the user’s choice of which task to perform. We also need
two new integer variables to store the values of hours and minutes.

There is one little glitch in collecting input of type char. While the Scan-
ner class has nice input methods for reading type integer values (nextInt())
and type double values (nextDouble ()), there is, unfortunately, no
“nextChar()” method. There is, however, a next() method that reads in a
string of characters. What we will do is declare a variable of type String (not a
primitive data type of Java, but available for use in any Java program), read in
a string, and then use the String method charAt(index) to peel off the first
character of the string, which will be at index 0. Strings, like arrays, are
counted from location 0, not location 1.

Figure 10 shows the new program. Note that all variables are now initial-
ized as part of the declaration. The condition evaluated at the beginning of
the if-else statement tests whether choice has the value ‘D’ If so, then the
condition is true, and the first group of statements is executed—that is,
the time is output in decimal format as we have been doing all along. If choice
does not have the value ‘D’, then the condition is false. In this event, the
second group of statements is executed. Note that because of the way
the condition is written, if choice does not have the value ‘D’, it is assumed

// Computes and outputs travel time
// for a given speed and distance
// Written by J. Q. Programmer, 6/28/16

import java.util.*;
public class TravelPlanner
{
public static void main(String[] args)
{
//rate of travel
//miles to travel
//time needed for travel (decimal)

int speed = 1;
double distance =
0.0p

0,03
double time =

int hours = 0; //time for travel in hours
int minutes = 0; //leftover time in minutes
String response = " ";

‘M’

//user’s response

//choice of output as decimal
//hours

//or hours and minutes

char choice =

Scanner inp = new Scanner(System.in);
System.out.print ("Enter your speed in
speed = inp.nextInt();

System.out.print("Enter your distance
distance =

mph: ");

in miles: ");
inp.nextDouble();
System.out.println("Enter your choice of format "
")

System.out.print("decimal hours (D) "

(M): ");

+ "for time,

+ "or hours and minutes
response = inp.next();
choice = response.charAt(0);

System.out.println();

3 Statement Types

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 24 CE

FIGURE |10
% The TravelPlanner Program if (choice == 'D’)
§ with a Conditional Statement {
(continued) time = distance/speed;

System.out.println("At " + speed + " mph, it will take "
+ time + " hours ");
System.out.println("to travel " + distance + " miles.");

b
else
{
time = distance/speed;
hours = (int)time;
minutes = (int) ((time - hours)*60);
System.out.println("At " + speed + " mph, it will take "
+ hours + " hours " + minutes + " minutes");
System.out.println("to travel " + distance + " miles.");
}

that the user wants to compute the time in hours and minutes, even though
choice may have any other value besides ‘D’ (including ‘d") that the user may
have typed in response to the prompt.

To compute hours and minutes (the “else” clause of the if-else state-
ment), time is computed in the usual way, which results in a decimal value.
The whole number part of that decimal is the number of hours needed for the
trip. We can get this number by type casting the decimal number to an
integer. This is accomplished by

hours = (int)time;

which drops all digits behind the decimal point and stores the resulting
integer value in hours. To find the fractional part of the hour that we dropped,
we subtract hours from time. We multiply this by 60 to turn it into some
number of minutes, but this is still a decimal number. We do another type cast
to truncate this to an integer value for minutes:

minutes = (int) ((time - hours)*60);

For example, if the user enters data of 50 mph and 475 miles and requests output
in hours and minutes, the following table shows the computed values.

Quantity Value
speed 50
distance 475
time = distance/speed 9.5
hours = (int)time 9
time — hours 0.5
(time — hours) *60 30.0

minutes = (int)((time — hours)*60) 30

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 25 $

Here is the actual program output for this case:

Enter your speed in mph: 50

Enter your distance in miles: 475

Enter your choice of format for time,

decimal hours (D) or hours and minutes (M): M
At 50 mph, it will take 9 hours and 30 minutes
to travel 475 miles.

The two statement groups in an if-else statement are identified by the enclos-
ing curly braces, but in Figure 10 we also indented them to make them easier
to pick out when looking at the program. Like comments, indentation is
ignored by the computer but is valuable in helping people to more readily
understand a program.

Now let’s look at the third variation on flow of control, namely looping
(iteration). We want to execute the same group of statements (called the loop
body) repeatedly, depending on the result of a Boolean condition. As long as
(while) the condition remains true, the loop body is executed. The condition
is tested before each execution of the loop body. When the condition becomes
false, the loop body is not executed again, which is usually expressed by say-
ing that the algorithm exits the loop. To ensure that the algorithm ultimately
exits the loop, the condition must be such that its truth value can be affected
by what happens when the loop body is executed. Figure 11 illustrates
the while loop. The loop body is statement S1 (which can be a compound

FIGURE 11
L While Loop

Condition =~ <+————

lr

S1

S2

3 Statement Types

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 26 $

statement), and S1 is executed while the condition is true. Once the condition
is false, the flow of control moves on to statement S2. If the condition is false
when it is first evaluated, then the body of the loop is never executed at all.
We saw this same scenario when we discussed pseudocode looping statements
in Chapter 2 (Figure 2.6).

Java uses a while statement to implement this type of looping. The form
of the statement is

while (Boolean condition)
S1;

For example, suppose we want to write a program to add a sequence of non-
negative integers that the user supplies and write out the total. We need a
variable to hold the total; we'll call this variable sum and make its data type
int. To handle the numbers to be added, we could declare a bunch of integer
variables such as n1, n2, n3, . .. and do a series of input-and-add statements
of the form

nl = inp.nextInt();
sum = sum + nl;
n2 = inp.nextInt();
sum = sum + n2;

and so on. There are two problems with this approach. The first is that we may
not know ahead of time how many numbers the user wants to add. If we
declare variables n1, n2, . . ., n25, and the user wants to add 26 numbers, the
program won't do the job. The second problem is that this approach requires
too much effort. Suppose that we know the user wants to add 2000 numbers.
We could declare 2000 variables, (n1, . . ., n2000), and we could write the
above input-and-add statements 2000 times, but it wouldn't be fun. Nor is it
necessary—we are doing a very repetitive task here, and we should be able to
use a loop mechanism to simplify the job. (We faced a similar situation in the
first pass at a sequential search algorithm, Figure 2.11; our solution there was
also to use iteration.)

Even if we use a loop mechanism, we are still adding a succession of
values to sum. Unless we are sure that the value of sum is zero to begin with,
we cannot be sure that the answer isn't nonsense. When we declare and
initialize the variable sum, we should set its value to zero.

Now on to the loop mechanism. First, let’s note that once a number has been
read in and added to sum, the program doesn't need to know the value of the
number any longer. We can declare just one integer variable called number, and
use it repeatedly to hold the first numerical value, then the second, and so on.

The general idea is then

int number = 0;
int sum = 0;

while (there are more numbers to add)
{

number = inp.nextInt();
sum = sum + number;

b
System.out.println("The total is " + sum);

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 27 $

Now we have to figure out what the condition “there are more numbers to
add” really means. Because we are adding nonnegative integers, we could ask
the user to enter one extra integer that is not part of the legitimate data but
is instead a signal that there are no more data. Such a value is called a sen-
tinel value. For this problem, any negative number would be a good sentinel
value. Because the numbers to be added are all nonnegative, the appearance of
a negative number signals the end of the legitimate data. We don’t want to
process the sentinel value (because it is not a legitimate data item); we only
want to use it to terminate the looping process. This might suggest the
following code:

int number = 0;

int sum = 0;

while (number >= 0) //but there is a problem here,
//see following discussion

number = inp.nextInt();
sum = sum + number;

b

System.out.println("The total is " + sum);

Here's the problem. How can we test whether number is greater than or equal
to 0 if we haven't read the value of number yet? We need to do a preliminary
input for the first value of number outside of the loop, then test that value in
the loop condition. If it is nonnegative, we want to add it to sum and then
read the next value and test it. Whenever the value of number is negative
(including the first value), we want to do nothing with it—that is, we want to
avoid executing the loop body. The following statements do this; we've also
added instructions to the user.

int number = 0;

int sum = 0;

System.out.println("Enter numbers to add;
+ "terminate with a negative number.");

number = inp.nextInt();
while (number >= 0)
{

sum = sum + number;
number = inp.nextInt();

b

System.out.println("The total is " + sum);

The value of number gets changed within the loop body by reading in a new
value. The new value is tested, and if it is nonnegative, the loop body
executes again, adding the data value to sum and reading in a new value for
number. The loop terminates when a negative value is read in. Remember the
requirement that something within the loop body must be able to affect
the truth value of the condition. In this case, it is reading in a new value for
number that has the potential to change the value of the condition from true
to false. Without this requirement, the condition, once true, would remain
true forever, and the loop body would be endlessly executed. This results in

3 Statement Types

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 28 CE

what is called an infinite loop. A program that contains an infinite loop will
execute forever (or until the programmer gets tired of waiting and interrupts
the program, or until the program exceeds some preset time limit).

Here is a sample of the program output.

Enter numbers to add; terminate with a negative
number.

5

6

10

-1

The total is 21

The problem we've solved here, adding nonnegative integers until a negative
sentinel value occurs, is the same one solved using assembly language in
Chapter 6. The Java code above is almost identical to the pseudocode version
of the algorithm shown in Figure 6.7. Thanks to the power of the language,
the Java code embodies the algorithm directly, at a high level of thinking,
whereas in assembly language this same algorithm had to be translated into
the lengthy and awkward code of Figure 6.8.

To process data for a number of different trips in the TravelPlanner pro-
gram, we could use a while loop. During each pass through the loop, the pro-
gram computes the time for a given speed and distance. The body of the loop
is therefore exactly like our previous code. All we are adding here is the frame-
work that provides looping. To terminate the loop, we could use a sentinel
value, as we did for the program above. A negative value for speed, for exam-
ple, is not a valid value and could serve as a sentinel value. Instead of that,
let’s allow the user to control loop termination by having the program ask the
user whether he or she wishes to continue. We'll need a variable to hold
the user’s response to this question. Of course, the user could answer “N” at
the first query, the loop body would never be executed at all, and the program
would terminate. Figure 12 shows the complete program.

FIGURE|12
The TravelPlanner Program // Computes and outputs travel time
B with Looping // for a given speed and distance

// Written by J. Q. Programmer, 7/05/16

import java.util.*;
public class TravelPlanner
{
public static void main(String[] args)

{

int speed = 1; //rate of travel

double distance = 0.0; //miles to travel

double time = 0.0; //time needed for travel (decimal)

int hours = 0; //time for travel in hours

int minutes = 0; //leftover time in minutes

String response = " "; //user’'s response

char choice = 'M’; //choice of output as decimal hours
//or hours and minutes

char more = ‘Y’; //user’s choice to do another trip

Scanner inp = new Scanner(System.in);

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 29 CE

FIGURE 12
The TravelPlanner Program System.out.println("Do you want to plan "
with Looping (continued) + "a trip? (Y or N): ");

response = inp.next();

more = response.charAt(0);

while(more == ‘Y’) //more trips to plan

{

System.out.println("Enter your speed in mph:");
speed = inp.nextInt();
System.out.println("Enter your distance in miles:");
distance = inp.nextDouble();
System.out.println("Enter your choice of format "
+ "for time, ");
System.out.println("decimal hours (D) "
+ "or hours and minutes (M): ");
response = inp.next();
choice = response.charAt(0);
System.out.println();

if (choice == ‘D’)
{
time = distance/speed;
System.out.println("At " + speed + " mph,"
+ "it will take " + time + " hours ");
System.out.println("to travel " + distance
+ " miles.");

b
else
{
time = distance/speed;
hours = (int)time;
minutes = (int) ((time - hours)*60);
System.out.println("At " + speed + " mph,"
+ "it will take " + hours + " hours " + minutes
+ " minutes");
System.out.println("to travel " + distance
+ " miles.");
b

System.out.println();
System.out.println("Do you want to plan "
+ "another trip? (Y or N): ");
response = inp.next();
more = response.charAt(0);
} //end of while loop

3 Statement Types

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.qgxd

1/17/15

5:22 PM Page 30 $

PRACTICE PROBLEMS

1. What is the output from the following section of code?

int numberl = 15;

int number2 = 7;

if (numberl >= number?2)
System.out.println(2*numberl);

else
System.out.println(2*number?);

2. What is the output from the following section of code?

int scores = 1;

while (scores < 20)

{
scores = scores + 2;
System.out.println(scores);

b

3. What is the output from the following section of code?

int quotaThisMonth = 7;

int quotalLastMonth = quotaThisMonth + 1;

if ((quotaThisMonth > quotaLastMonth) ||
(quotaLastMonth >= 8))

{
System.out.println("Yes");
quotaLastMonth = quotalastMonth + 1;

b

else

{
System.out.println("No");
quotaThisMonth = quotaThisMonth + 1;

}

4. How many times is the output statement executed in the following
section of code?

int left = 10;

int right = 20;

while (left <= right)

{
System.out.println(left);
left = left + 2;

b

5. Write a Java statement that outputs “Equal” if the integer values of
night and day are the same, but otherwise does nothing.

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 31 $

»~

4 Another Example R

Let’s briefly review the types of Java programming statements we've learned.
We can do input and output—reading values from the user into memory, writ-
ing values out of memory for the user to see, being sure to use meaningful
variable identifiers to reference memory locations. We can assign values to
variables within the program. And we can direct the flow of control by using
conditional statements or looping. Although there are many other statement
types available in Java, you can do almost everything using only the modest
collection of statements we've described. The power of Java lies in how
these statements are combined and nested within groups to produce ever
more complex courses of action.

For example, suppose we write a program to assist SportsWorld, a company
that installs circular swimming pools. In order to estimate their costs for
swimming pool covers or for fencing to surround the pool, SportsWorld needs
to know the area or circumference of a pool, given its radius. A pseudocode
version of the program is shown in Figure 13.

We should be able to translate this pseudocode fairly directly into
the body of the main method. Other things we need to add to complete the
program are

e A prologue comment to explain what the program does (optional but
always recommended for program documentation)

e An import statement so we can use the Scanner class for collecting
input
e The class header; we'll call the class SportsWorld

e The main method header; remember this is always
public static void main(String[] args)

e Variable declarations

Finally, the computations for circumference and area both involve the
constant pi (7). We could use some numerical approximation for pi each
time it occurs in the program, but the Math class of the standard Java
library already defines the constant PI. We can invoke this constant value
by writing

Math.PI

Figure 14 gives the complete program; the prologue comment notes the use of
the Math class. Figure 15 shows what actually appears on the screen when this
program is executed with some sample data.

It is inappropriate (and messy) to output the value of the area to 14 or 15
decimal places based on a value of the radius given to one or two decimal
places of accuracy. Exercise 11 at the end of this chapter tells how to format
real number output to a specified number of decimal digits.

4 Another Example

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 32 CE

FIGURE 13
A Pseudocode Version of the Get value for user’s choice about continuing
| SportsWorld Program While user wants to continue, do the following steps
Get value for pool radius
Get value for choice of task
If task choice is circumference
Compute pool circumference
Print output
Else (task choice is area)
Compute pool area
Print output
Get value for user’s choice about continuing
Stop

FIGURE|14

The SportsWorld Program //This program helps SportsWorld estimate costs
//for pool covers and pool fencing by computing
//the area or circumference of a circle

//with a given radius.

//Any number of circles can be processed.
//Uses class Math for PI

//Written by M. Phelps, 10/05/16

import java.util.x*;
public class SportsWorld

{
public static void main(String[] args)
{
double radius = 0.0; //radius of a pool -
//given
double circumference = 0.0; //pool circumference -
//computed
double area = 0.0; //pool area - computed
String response = " "; //user’s response
char taskToDo = ‘C’; //holds user choice to

//compute circumference
//or area

char more = ‘Y’; //controls loop for
//processing
//more pools

Scanner inp = new Scanner(System.in);

System.out.print("Do you want to process "
+ "a pool? (Y or N): ");

response = inp.next();
more = response.charAt(0);

while(more == ‘Y') //more circles to process
{
System.out.println();
System.out.print("Enter the value of the "
+ "radius of the pool: ");
radius = inp.nextDouble();

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 33 CE

FIGURE|14
The SportsWorld Program //See what user wants to compute
(continued) System.out.println("Enter your choice of task.");
System.out.print("C to compute circumference, "
+ "A to compute area: ");
response = inp.next();
taskToDo = response.charAt(0);
System.out.println();
if (taskToDo == ‘C’") //compute circumference
{
circumference = 2*Math.PI*radius;
System.out.println("The circumference for a "
+ "pool of radius " + radius + " is "
+ circumference);
}
else //compute area
{
area = Math.PI * radius * radius;
System.out.println("The area for a pool"
+ " of radius " + radius + " is " + area);
}
System.out.println();
System.out.print("Do you want to process "
+ "more pools? (Y or N): ");
response = inp.next();
more = response.charAt(0);
} //end of while loop
//finish up
System.out.println("Program will now terminate.");
} //end of main method
} //end of class SportsWorld
FIGURE 15
ASamp[e Session Usjng the Do you want to process a pool? (Y or N): Y

Program of Figure 14 Enter the value of the radius of the pool: 2.7

Enter your choice of task.

C to compute circumference, A to compute area: C
The circumference for a pool of radius 2.7 is 16.964600329384883
Do you want to process more pools? (Y or N): Y

Enter the value of the radius of the pool: 2.7
Enter your choice of task.
C to compute circumference, A to compute area: A

The area for a pool of radius 2.7 is 22.902210444669592
Do you want to process more pools? (Y or N): Y

Enter the value of the radius of the pool: 14.53
Enter your choice of task.
C to compute circumference, A to compute area: C

4 Another Example

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 34 $

FIGURE|15
A Sample Session Using The circumference for a pool of radius 14.53 is 91.29468251331939

&\ the Program of Figure 14 Do you want to process more pools? (Y or N): N

(continued) Program will now terminate.

PRACTICE PROBLEMS

1. Write a complete Java program to read in the user’s first and last
initials and write them out.

2. Write a complete Java program that asks for the price of an item
and the quantity purchased, and writes out the total cost.

3. Write a complete Java program that asks for a number. If the
number is less than 5, it is written out, but if it is greater than or
equal to 5, twice that number is written out.

4. Write a complete Java program that asks the user for a positive
integer n, and then writes out all the numbers from 1 up to and
including n.

e

5 Managing Complexity |

The programs we have written have been relatively simple. More complex
problems require more complex programs to solve them. Although it is fairly
easy to understand what is happening in the 50 or so lines of the SportsWorld
program, imagine trying to understand a program that is 50,000 lines long.
Imagine trying to write such a program! It is not possible to understand—all
at once—everything that goes on in a 50,000-line program.

»> 5.1 Divide and Conquer

Writing large programs is an exercise in managing complexity. The solution is
a problem-solving approach called divide and conquer. Suppose a program is
to be written to do a certain task; let’s call it task T. Suppose further that we
can divide this task into smaller tasks, say A, B, C, and D, such that, if we can
do those four tasks in the right order, we can do task T. Then our high-level
understanding of the problem need only be concerned with what A, B, C, and
D do and how they must work together to accomplish T. We do not, at this
stage, need to understand how tasks A, B, C, and D can be done. Figure 16(a),
an example of a structure chart or structure diagram, illustrates this situa-
tion. Task T is composed in some way of subtasks A, B, C, and D. Later we can
turn our attention to, say, subtask A, and see if it too can be decomposed into
smaller subtasks, as in Figure 16(b). In this way, we continue to break the
task down into smaller and smaller pieces, finally arriving at subtasks that are
simple enough that it is easy to write the code to carry them out. Better yet,

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 35 $
FIGURE |16
i Structure Charts Task T Task T
A B C D A B C D

Al A2 A3

(a) Basic decomposition (b) More detailed decomposition

we may find a helpful class with methods that will do these subtasks for us.
By dividing the problem into small pieces, we can conquer the complexity that
is overwhelming if we look at the problem as a whole.

Divide and conquer is a problem-solving approach and not just a computer
programming technique. Outlining a term paper into major and minor topics is
a divide-and-conquer approach to writing the paper. Doing a Form 1040
Individual Tax Return for the Internal Revenue Service can involve subtasks of
completing Schedules A, B, C, D, and so on, and then reassembling the results.
Designing a house can be broken down into subtasks of designing floor plans,
wiring, plumbing, and the like. Large companies organize their management
responsibilities using a divide-and-conquer approach; what we have called
structure charts become, in the business world, organization charts.

How is the divide-and-conquer problem-solving approach reflected in the
resulting computer program? If we think about the problem in terms of subtasks,
then the program should show that same structure; that is, part of the code
should do subtask A, part should do subtask B, and so on. We divide the code
into modules or subprograms, each of which does some part of the overall task.
Then we empower these modules to work together to solve the original problem.

porarily transferred to the user’s system (whatever that sys-
tem may be) and interpreted/executed by the browser itself.

Java programs come in two renditions, Java applications
and Java applets. Applications are complete stand-alone
programs that reside and run on some computer. These are
the kinds of programs we have been working with in this
module.

But Java’s development went hand in hand with the
development of Web browsers. Applets (small applications)
are programs designed to run from Web pages. The bytecode
for an applet is embedded in a Web page on a server
machine; when the user views the Web page with a Java-
enabled browser, a copy of the applet’s bytecode is tem-

Today's common Web browsers, such as Internet Explorer,
Firefox, Chrome, and Safari, are Java-enabled. Java applets
bring audio, video, and real-time user interaction to Web
pages, making them “come alive” and become much more
than static hyperlinked text. For example, a Java applet
might display an animated analog clock face on the screen
that shows your computer system’s time, or a streaming
ticker tape of stock market quotes, or a form that allows you
to book an airline reservation online. Java applets held much
of the original appeal of the Java language, but big, serious
programs are also written using Java applications.

5 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 36 $

FIGURE 17
Methods in the Circle Class

P> 5.2 Using Methods

In Java, modules of code are called methods. We have already seen that a
main method is required in each Java program. In the SportsWorld program
(Figure 14) the main method appears to do the entire task. But the divide-
and-conquer approach is already at work here. The main method does not
handle the subtasks of reading various kinds of input. Instead, it creates an
object from the Scanner class that in turn uses methods from the Scanner
class, such as nextDouble(), that provide those services. The main method
does not really do all the details of writing output, either; it makes use of the
print and printin methods.

Let’s review the main method of the SportsWorld program with an eye to
further subdividing the task. There is a loop that does some operations as long
as the user wants. What gets done? Input is obtained from the user about the
radius of the circle and the choice of task to be done (compute circumference
or compute area). Then the circumference or the area gets computed and writ-
ten out. Aside from input and output, we can identify two related subtasks:
computing the area of a circle and computing the circumference of a circle.
Instead of having the main method do these computations, we will create a
Circle class (Figure 17) with two methods that provide these two services to the
main method. A Java program can have only one main method, and that is
where execution of the program begins. Figure 18 shows a pseudocode descrip-
tion of the main method using a modular approach that calls on the methods
in the Circle class. When the flow of control reaches the “Ask Circle class to
compute circumference,” it transfers to the appropriate method code in the
Circle class and executes that code. When execution of that method code is
complete, flow of control transfers back to the main method and picks up
where it left off. The same thing happens for “Ask Circle class to compute area”.

Methods are named using ordinary Java identifiers, customarily starting
with a lowercase letter. We'll name the two Circle methods doCircumference
and doArea. Because we're using meaningful identifiers, it is obvious which
subtask is carried out by which method.

There are two types of methods. A void method carries out some task, per-
haps using values it receives from the main method, but does not pass any new
values back to the main method. (The word void signifies “returning nothing.”)
A nonvoid method returns a single new value back to the main method—that
is its primary job. This gives the main method information it did not have pre-

Circle
class

Compute Compuie
area Circumference

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM

N [FIGURE 18

¥ Pseudocode for the SportsWorld
B Main Method Using the Circle
Class

Page 37

—p—

Get value for user’s choice about continuing
While user wants to continue, do the following steps
Get value for pool radius
Get value for choice of task
If task choice is circumference
Ask Circle class to compute circumference
Print output
Else (task choice is area)
Ask Circle class to compute area
Print output
Get value for user’s choice about continuing
Stop

viously. This single value can be some new data value that the method has col-
lected from the user, or it can be some new data value that the method has
computed, perhaps using values it received from the main method.

The doCircumference and doArea methods compute new values (the
circumference and area, respectively) and return them to the main method. So
doCircumference and doArea are nonvoid methods.

Either kind of method may need certain information from the main
method to do its job; specifically, it may need to know the current value of
certain quantities in the main method. When the main method wants a
method in another class to be executed, it must “invoke” the method. It
does this by giving the class name, followed by a dot, then the method
name, and finally a list in parentheses of the identifiers for variables that
concern that method. This is called an argument list. The overall form of a
method invocation is thus

class-identifier.method-identifier(argument list)

The doCircumference and doArea methods each need to know the current
radius value in order to carry out their computations, so when these methods
are invoked, each of their argument lists consists of the single variable radius.

The invocation of a void method is a complete Java program statement by
itself (followed by the semicolon, of course), but the invocation of a nonvoid
method is not. Remember that a nonvoid method returns a single value to the
main method. You can think of the method invocation just as if it were a variable
containing that single returned value. You cannot have the method invocation as
a complete statement, just as you cannot have a single variable identifier as a
complete statement. Instead, you use the method invocation as part of a state-
ment, in the same way you use any variable identifier. For example, you can make
it part of what an output statement writes out, or what an assignment statement
assigns to a variable. In our circle program, when the doCircumference method
returns the value of the circle’s circumference, we would like to assign that value
to the main method’s circumference variable, so we use the assignment statement

circumference Circle.doCircumference(radius);
in the main method.

Figure 19 shows the new main method. It closely follows the pseudocode
of Figure 18. At a glance, it does not look a great deal different from our

5 Managing Complexity 37

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 38 CE

FIGURE 19
A Modularized Version of the //This program helps SportsWorld estimate costs
SportsWorld Program //for pool covers and pool fencing by computing

//the area or circumference of a circle

//with a given radius.

//Any number of circles can be processed.
//Uses class Circle

//Written by M. Phelps, 10/23/16

import java.util.*;
public class SportsWorld

{
public static void main(String[] args)
{
double radius = 0.0; //radius of a pool -
//given
double circumference = 0.0; //pool circumference -
//computed
double area = 0.0; //pool area - computed
String response = " "; //user’s response
char taskToDo = ‘C’; //holds user choice to

//compute circumference
//or area

char more = ‘Y’; //controls loop for
//processing
//more pools

Scanner inp = new Scanner(System.in);

System.out.print("Do you want to process "
+ "a pool? (Y or N): ");

response = inp.next();
more = response.charAt(0);

while(more == ‘Y') //more pools to process
{
System.out.println();
System.out.print("Enter the value of the "
+ "radius of the pool: ");
radius = inp.nextDouble();

//See what user wants to compute

System.out.println("Enter your choice of task.");

System.out.print("C to compute circumference, "
+ "A to compute area: ");

response = inp.next();
taskToDo = response.charAt(0);
System.out.println();
System.out.println();

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 39 CE

FIGURE| 19

Y A Modularized Version of the
| SportsWorld Program
(continued)

if (taskToDo == ‘C’) //compute circumference

{

circumference = Circle.doCircumference(radius);
System.out.println("The circumference for a pool"
+ " of radius " + radius + " is " + circumference);

b

else //compute area

{

area = Circle.doArea(radius);
System.out.println("The area for a pool"
+ " of radius " + radius + " is " + area);

System.out.println();
System.out.print("Do you want to process "
+ "more pools? (Y or N): ");

response = inp.next();
more = response.charAt(0);
} //end of while loop

//finish up
System.out.println("Program will now terminate.");

} //end of main method
} //end of class SportsWorld

former main method. However, it is conceptually quite different; it uses a
helping class (Circle), and the subtasks of computing the circumference and
computing the area have been relegated to methods of this class. The details
(in this case the formulas for computing circumference and area) are now
hidden and have been replaced by method invocations. If these subtasks had
required many lines of code, our new main method would indeed be shorter—
and easier to understand—than before.

The main method now invokes methods of the Circle class. It is time to see
how to write the code for these other, nonmain methods.

P> 5.3 Writing Methods

The outline for a Java method is shown in Figure 20. The method header has
the general form

scope-indicator return-indicator identifier(parameter list)

Note that no semicolon appears at the end of a method header.
Let’s look at each of these parts in turn.

e scope-indicator. The scope indicator uses keywords to determine how
and where the method can be invoked. If the scope indicator is public
static, then any method can invoke this method by giving the name of

5 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 40 $

FIGURE 20
8 The Outline for a Java Method

method header
/lcomment

{
local declarations [optional]
method body

the class, then a dot, then the method identifier and argument list.
This is the syntax that the main method in Figure 19 uses to invoke
the two methods of the Circle class.

e return-indicator. The return indicator classifies a method as void or
nonvoid. If it's a void method, the return indicator is just the word
void. If it's a nonvoid method, the return indicator is the data type of
the single value the method returns.

e identifier. This is the name of the method and can be any legal Java
identifier, although most programmers use a lowercase letter to begin
the name.

® parameter list. The parameters in the parameter list correspond to the
arguments in the statement that invoke this method; that is, the first
parameter in the list matches the first argument given in the state-
ment that invokes the method, the second parameter matches the
second argument, and so on. It is through this correspondence
between parameters and arguments that the method receives data
from the invoking method. The data type of each parameter must be
given as part of the parameter list, and it must match the data type of
the corresponding argument.

For example, consider a method findAverage within class Weather to compute
and return the average daily rainfall over a certain number of days. The total
rainfall (a real number) and the number of days (an integer) are data values
the method needs to know in order to compute the daily average, and these
values are passed to the method as arguments. The value returned by the
method, the daily average, is type double. This method can be invoked in the
main method by a statement such as

dailyAverage = Weather.findAverage(totalRain, days);
The header for the findAverage method could look like
public static double findAverage(double total, int n)

Here the parameters total and n are in the correct order and have the correct
data type to match with their corresponding arguments. The argument names,
totalRain and days, are variable identifiers declared in the main method, but
the parameters can have different identifiers, as they do here. Arguments and
parameters correspond by virtue of their respective positions in the argument
list and the parameter list, regardless of the identifiers used. Within the body

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 41 CE

yIFIGURE/ 21
2 The doCircumference Method

of the method, it is the parameter identifiers that are used; total has the value
passed to it by totalRain, and n has the value passed to it by days, as follows:

dailyAverage = Weather.findAverage(totalRain, days);
public static double findAverage(double total, int n)

Arguments in Java are passed by value. This means that the method can use
the argument value but cannot permanently change it. What really happens is
that the method receives a copy of the data value to store in a local memory
location, but never knows the memory location where the original value is
stored. If the method changes the value of its copy, this change has no effect
when control returns to the main method.

In the Circle program, the doCircumference method is invoked with a sin-
gle argument radius of type double. It is a nonvoid method and returns a type
double value. Its header can be written as

public static double doCircumference(double radius)

where this time we used the same name for the parameter as for the
argument.

The complete doCircumference method is shown in Figure 21. Because it is
a separate method, we have added a comment right below the method header
to describe specifically what this method does. A variable circumference is
declared within the method. A variable declared within a method is known
and can be used only within that method; it is said to be local to that method.
This local variable circumference has nothing to do with the circumference
variable in the main method of the SportsWorld class. It is natural to use the
same name for each, but the program works perfectly well if we name this
local variable something entirely different.

Because doCircumference is a nonvoid method, it must return a single
value to the main method. This is done by the return statement, whose syn-
tax is

return expression;

The expression must evaluate to the data type that the nonvoid method has
promised to return in its header, which in the case of doCircumference is type
double. All nonvoid methods must have a return statement, but void methods
generally do not have a return statement.

public static double doCircumference (double radius)

//returns circumference of a Circle

{

double circumference;
circumference = 2*Math.PI*radius;

return circumference;

5 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 42 CE

FIGURE 22

The Circle Class in a
Modularized Version of the
SportsWorld Program

The doArea method is very similar to doCircumference. The complete Circle
class is given in Figure 22. Notice that this class has no main method. A Java
program always begins execution with the main method, so the code in
Figure 22 will compile, but by itself, it cannot be executed. It is not a stand-
alone program but a useful tool.

To run the program, each class must be in a separate file, and the filename
must be the name of the class with a .java extension. So there is a Sports-
World.java file and a Circle.java file. Each .java file is compiled into a .class file,
and the .class file containing the main method is then executed. It is helpful
if all these files are in the same folder or directory on your computer so that
the system knows where to find them.

So there we have it—a complete modularized version of our Sports-
World program. Because it seems to have taken a lot of effort to arrive at
this second version (which, after all, does the same thing as the program in
Figure 14), let’s review what the new version does and why this effort is
worthwhile. The major task is accomplished by doing a series of subtasks
(computing circumference and area), and the work for these subtasks takes
place within methods of a separate class. The main method doesn’t need to
know how these tasks are done; it only needs to invoke the appropriate
method at the appropriate point. As an analogy, we may think of the pres-
ident of a company calling on various assistants to carry out tasks as
needed. The president does not need to know how a task is done, only the
company division (class name) and name of the person (method name)
responsible for carrying it out.

This compartmentalization is useful in many ways. It is useful when we
plan the solution to a problem, because it allows us to use a divide-and-
conquer approach. We can think about the problem in terms of subtasks.

//Class for circles. Computes circumference and
//area, given radius.

//Uses class Math for PI

//Written by I. M. Euclid, 10/23/16

public class Circle
{
public static double doCircumference(double radius)
//returns circumference of a circle
{
double circumference;
circumference = 2*Math.PI*radius;
return circumference;
b
public static double doArea(double radius)
//returns area of a circle
{
double area;
area = Math.PI * radius * radius;
return area;

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 43 $

FIGURE| 23
Some Java Terminology

This makes it easier for us to understand how to achieve a solution to a large
and complex problem. We can group similar subtasks together and think of
them as methods of a helping class. It is also useful when we code the solution
to a problem. Instead of having to write every detail of the code in a mono-
lithic main method, we can write a main method that invokes other methods
of other classes as needed. We can write methods for these other classes one
at a time, so that the program gradually expands. Developing a large software
project is a team effort, and different parts of the team can be writing differ-
ent classes and methods at the same time. It is useful when we test the pro-
gram, because we can test one new method at a time as the program grows,
and any errors are localized to the method being added. (The main method can
be tested early by writing appropriate headers but empty bodies for the other
methods.) Compartmentalization is useful when we modify the program,
because changes tend to be local to certain subtasks, hence within certain
methods in the code. And finally it is useful for anyone (including the pro-
grammer) who wants to read the resulting program. The overall idea of how
the program works, without the details, can be gleaned from reading the main
method; if and when the details become important, the appropriate code for
the other methods can be consulted. In other words, modularizing a program
is useful for its

¢ Planning
e Coding

e Testing

¢ Modifying
® Reading

Finally, once a class has been developed and tested, it is then available for any
application program to use. An application program that does quite different
things than SportsWorld, but that needs the value of the area or circumfer-
ence of a circle computed from the radius, can use our Circle class.

Figure 23 summarizes several terms introduced in this section.

TERM MEANING TERM MEANING
void Performs a task, but returns no nonvoid Computes a value, must include
method value; method invocation method a return statement; method
is a complete Java invocation is used within
statement another Java statement
argument Variable passed to method parameter “Dummy variable” in a method
when it is invoked that receives its value from

the corresponding argument
local Declared and known only
variable within a method

argument Method receives a copy of the

passed value and can make no
by value permanent changes in
the value

5 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 44 $

PRACTICE PROBLEMS

1. What is the output of the following Java program?

public class Probleml
{
public static void main(String[] args)
{
int number = 10;
int newNumber = 0;
newNumber = Helper.doIt(number);
System.out.println(newNumber) ;
}
}
public class Helper
{
public static int doIt(int n)
{
int twice = 0;
twice = 2*n;
return twice;

i
2. What is the output of the following Java program?

public class Problem?2
{
public static void main(String[] args)
{
int number = 10;
System.out.println(Helper.dolt (number));
)3
3

public class Helper

{
public static int doIt(int n)

{

return 2*n;
}
¥

3. What is the output of the following Java program?

public class Problem3

{
public static void main(String[] args)
{
int number = 10;
System.out.println(Helper.doIt (number));
System.out.println(number) ;
b
¥

(continues)

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 45 $

PRACTICE PROBLEMS (continued)

public class Helper
{
public static int doIt(int number)
{
number = 7;
System.out.println(number) ;
return 2*number;

}

4. Suppose a nonvoid method called tax in a class called Sales gets a
value subtotal from the main method, multiplies subtotal by the tax
rate of 0.55, and returns the resulting tax amount. All quantities
are type double.

a. Write the method header.

b. Write the method body.

c. Write a single statement in the main method that invokes the tax
method and writes out the resulting tax amount.

6 Object-Oriented Programming

: ‘é‘,

V 6.1 What Is It?

The divide-and-conquer approach to programming is a “traditional” approach.
The focus is on the overall task to be done: How to break it down into
subtasks, and how to write algorithms for these subtasks that are carried out
by communicating modules—in the case of Java, by methods in various
classes. The program can be thought of as a giant statement executor designed
to carry out the major task, even though the main module may simply call on,
in turn, the various other modules that do the subtask work.

Object-oriented programming (OOP) takes a somewhat different
approach. A program is considered a simulation of some part of the world that
is the domain of interest. “Objects” populate this domain. Objects in a bank-
ing system, for example, might be savings accounts, checking accounts, and
loans. Objects in a company personnel system might be employees. Objects in
a medical office might be patients and doctors. Each object is an example
drawn from a class of similar objects. The savings account “class” in a bank
has certain properties associated with it, such as name, Social Security num-
ber, account type, and account balance. Each individual savings account at the
bank is an example of (an object of) the savings account class, and each has
specific values for these common properties; that is, each savings account has
a specific value for the name of the account holder, a specific value for the
account balance, and so forth. Each object of a class therefore has its own data
values.

6 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 46 $

: FIGURE 24
2.k Three Key Elements of 00P

A class also has one or more subtasks associated with it, and all objects
from that class can perform those subtasks. In carrying out a subtask, each
object can be thought of as providing some service. A savings account, for
example, can compute compound interest due on the balance. When an
object-oriented program is executed, the program generates requests for
services that go to the various objects. The objects respond by performing the
requested service—that is, carrying out the subtask. Thus, a program that is
using the savings account class might request a particular savings account
object to perform the service of computing interest due on the account
balance. An object always knows its own data values and may use them in
performing the requested service.

Some of this sounds familiar. We know about subtasks (methods) associ-
ated with a class. The new idea is that, instead of directly asking a class to
carry out a subtask, we ask an object of that class to carry out a subtask. The
even bigger new idea is that such objects have data values for the class prop-
erties. Instead of storing data in variables that are available to the whole
program and then passing them as arguments to subtasks, the program can
simply ask an object to use its own data when it carries out a subtask.

There are three terms often associated with object-oriented programming,
as illustrated in Figure 24. The first term is encapsulation. Each class has its
own program module to perform each of its subtasks. Any user of the class
(which might be some other program) can ask an object of that class to invoke
the appropriate module and thereby perform the subtask service. The class
user needs to know what services objects of the class can provide and how to
request an object to perform any such service. The details of the module code
belong to the class itself, and this code may be modified in any manner, as
long as the way the user interacts with the class remains unchanged. (In the
savings account example, the details of the algorithm used to compute inter-
est due belong only to the class, and need not be known by any user of the
class. If the bank wants to change how it computes interest, only the code for
the interest module in the savings account class needs to be modified; any
programs that use the services of the savings account class can remain
unchanged.) Furthermore, the class properties represent data values that will
exist as part of each object of the class. A class therefore consists of two com-
ponents, its subtask modules and its properties, and both components are
“encapsulated”—bundled—with the class.

A second term associated with object-oriented programming is inheritance.
Once a class A of objects is defined, a class B of objects can be defined as a

Inheritance

Polymorphism

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 47 $

“subclass” of A. Every object of class B is also an object of class A; this is some-
times called an “is a” relationship. Objects in the B class will “inherit” all of the
properties and be able to perform all the services of objects in A, but they may
also be given some special property or ability. The benefit is that class B does
not have to be built from the ground up, but rather can take advantage of the
fact that class A already exists. In the banking example, a senior citizen's
savings account would be a subclass of the savings account class. Any senior
citizens savings account object is also a savings account object, but it may have
special properties or be able to provide special services.

The third term is polymorphism. Poly means “many.” Objects may provide
services that should logically have the same name because they do roughly
the same thing, but the details differ. In the banking example, both savings
account objects and checking account objects should provide a
“compute interest” service, but the details of how interest is computed differ
in these two cases. Thus, one name, the name of the service to be performed,
has several meanings, depending on the class of the object providing the ser-
vice. It may even be the case that more than one service with the same name
exists for the same class, although there must be some way to tell which ser-
vice is meant when it is invoked by an object of that class.

Let’s change analogies from the banking world to something more fanci-
ful, and consider a football team. Every member of the team’s backfield is an
“object” of the “backfield” class. The quarterback is the only “object” of the
“quarterback” class. Each backfield object can perform the service of carrying
the ball if he (or she) receives the ball from the quarterback; ball-carrying is a
subtask of the backfield class. The quarterback who hands the ball off to a
backfield object is requesting that the backfield object perform that subtask
because it is “public knowledge” that the backfield class carries the ball and
that this service is invoked by handing off the ball to a backfield object. The
“program” to carry out this subtask is encapsulated within the backfield class,
in the sense that it may have evolved over the week’s practice and may
depend on specific knowledge of the opposing team, but at any rate, its
details need not be known to other players. Inheritance can be illustrated by
the halfback subclass within the backfield class. A halfback object can do
everything a backfield object can but may also be a pass receiver. And poly-
morphism can be illustrated by the fact that the backfield may invoke a
different “program” depending on where on the field the ball is handed off. 0f
course our analogy is imperfect, because not all human “objects” from the
same class behave in precisely the same way—fullbacks sometimes receive
passes and so on.

p»> 6.2 Java and 00P

Java is very much an object-oriented programming language. We learned right
at the beginning of this chapter that all Java code (except for comments and
import statements) must be either a class header or inside a class definition.
In the modularized version of our SportsWorld program, we use a Circle class
with methods that the main method in the SportsWorld class can invoke. The
main method does not create any objects of the Circle class, but can neverthe-
less invoke these methods, because each method has the word “static” in the
method header. A static method is one that doesn’t need to be invoked by an

6 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 48 $

object of that class. Instead, it can be invoked by giving the class name,
followed by a dot, and then the method name with an appropriate list of argu-
ments, just as we have done with all the methods we have used so far.

Suppose we write a new Circle class with the assumption that applications
programs using this class will create objects of the class. The objects are indi-
vidual circles. A Circle object has a radius. A Circle object, which knows the
value of its own radius, should be able to perform the services of computing its
own circumference and its own area. At this point, we are well on the way to
answering the two major questions about our new Circle class:

e What are the properties common to any object of this class? (In this
case, there is a single property—the radius.)

e What are the services that any object of the class should be able to
perform? (In this case, it must be able to compute its circumference
and compute its area, although as we will see shortly, we will need
other services as well.)

Now we can create a truly object-oriented version of the SportsWorld program.
What are the objects of interest within the scope of this problem? SportsWorld
deals with circular swimming pools, but they are basically just circles. So the
SportsWorld program creates a Circle object. In Java terminology, objects are
called instances of a class, the properties are called instance variables, and
the services are called instance methods.

Figure 25 shows the complete code for the new Circle class. Four instance
methods are given, followed by a declaration of the single instance variable,
radius. The first method is void, and the remaining three return values. None
of the methods is static, meaning that they must be invoked by Circle objects.

As before, the SportsiWorld class handles all of the user interaction and
makes use of the Circle class. It creates a Circle object and requests that object
to set the value of its radius and to find its area or find its circumference,
depending on the program user's preference. The object invokes the Circle
methods to carry out these tasks. From Figure 25, we see that the setRadius
method uses an assignment statement to change the value of radius to what-
ever quantity is passed to the parameter value. The doCircumference and
doArea methods use the usual formulas for their computations, but instead of
using local variables for circumference and area, we've compressed the code
into a single return statement. (This has nothing to do with object orienta-
tion; we could have done this in version 2 of the program.) The purpose of the
getRadius method will be explained shortly.

The methods of the Circle class are all declared using the keyword public.
Public methods can be used anywhere, including any Java program (like
SportsWorld) that wants to make use of this class. Think of the Circle class as
handing out a business card that advertises these services: Hey, you want a
Circle object that can find its own area? Find its own circumference? Set the
value of its own radius? I'm your class! (Class methods can also be private, but
a private method is a sort of helping task that can be used only within the
class in which it occurs.)

The single instance variable of the class (radius) is declared using the key-
word private. Only methods in the Circle class itself can use this variable. Note
that doCircumference and doArea have no parameter for the value of the
radius; as methods of this class, they know at all times the current value of

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 49 CE

FIGURE 25

The New Circle Class //Class for Circle objects. A circle has a radius
//and can compute its circumference and area
//Uses class Math for PI
//Written by I.M. Euclid, 10/23/16

public class Circle

{

public void setRadius(double value)
//sets radius equal to value

{

radius = value;

b
public double getRadius()

//returns current radius

{

return radius;

i

public double doCircumference()
//computes and returns circumference of a circle

{

return 2*Math.PI*radius;

b
public double doArea()
//computes and returns area of a circle

{

return Math.PI * radius * radius;

}
//instance variable
private double radius;

radius for the object that invoked them, and it does not have to be passed to
them as an argument. Because radius has been declared private, however, the
SportsWorld class cannot use the value of radius. It cannot write out that
value or directly change that value by some assignment statement. It can,
however, request a Circle object to invoke the getRadius method to return the
current value of the radius in order to write it out. It can also request a Circle
object to invoke the setRadius method to change the value of its radius; setRa-
dius does have a parameter to receive a new value for radius. Instance vari-
ables are generally declared private instead of public, to protect the data in an
object from reckless changes some application program might try to make.
Changes in the values of instance variables should be performed only under
the control of class objects through methods such as setRadius.

The new SportsWorld class (Figure 26) differs from the earlier version
(Figure 19) in several ways. The main method must create a Circle object, an
instance of the Circle class. The following statement does this:

Circle swimmingPool = new Circle();

6 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 50 CE

FIGURE|26

The New SportsiWorld Class //This program helps SportsWorld estimate costs
//for pool covers and pool fencing by computing
//the area or circumference of a circle

//with a given radius.

//Any number of circles can be processed.
//Uses class Circle

//Written by M. Phelps, 11/12/16

import java.util.x*;
public class SportsWorld

{
public static void main(String[] args)
{
double newRadius = 0.0; //radius of a pool - given
String response = " "; //user'’'s response
char taskToDo = ‘C’; //holds user choice to

//compute circumference
//or area

char more = ‘Y’; //controls loop for
//processing
//more pools

Scanner inp = new Scanner(System.in);

Circle swimmingPool = new Circle(); //create a

//Circle object

System.out.print("Do you want to process "
+ "a pool? (Y or N): ");

response = inp.next();
more = response.charAt(0);

while(more == ‘Y’) //more pools to process
{
System.out.println();
System.out.print("Enter the value of the "
+ "radius of the pool: ");
newRadius = inp.nextDouble();

swimmingPool.setRadius (newRadius); //give pool
//this radius

//See what user wants to compute

System.out.println("Enter your choice of task.");

System.out.print("C to compute circumference, "
+ "A to compute area: ");

response = inp.next();
taskToDo = response.charAt(0);
System.out.println();
System.out.println();

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 51 CE

FIGURE 26
The New SportsWorld Class if (taskToDo == ‘C’) //compute circumference

(continued) {
System.out.println("The circumference for a pool"

+ " of radius " + swimmingPool.getRadius/()
+ " is " + swimmingPool.doCircumference());

else //compute area
System.out.println("The area for a pool"

+ " of radius " + swimmingPool.getRadius/()
+ " is " + swimmingPool.doArea());

System.out.println();
System.out.print("Do you want to process "
+ "more pools? (Y or N): ");

response = inp.next();
more = response.charAt(0);

} //end of while loop

//finish up
System.out.println("Program will now terminate.");

} //end of main method
} //end of class SportsWorld

The left side of this statement:

Circle swimmingPool
looks like an ordinary variable declaration such as

int number
It seems to be saying, “Give me a memory location in which I will store
something of type Circle and call it swimmingPool.” What we are asking for,
however, is memory space to store the instance variables of the object, of
which there might be many for some classes of objects. Unlike ordinary
variables, Java does not give us memory locations in which to store the
instance variables of an object until we specifically request “new” memory for
this purpose via the right side of the statement

new Circle()
After

Circle swimmingPool = new Circle();

the object swimmingPool exists, and the main method can ask swimmingPool to
perform the various services of which instances of the Circle class are capable.

6 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 52 $

The syntax to request an object to invoke a method is to give the name of
the object, followed by a dot, followed by the name of the class method,
followed by any arguments the method may need.

object-identifier.method-identifier(argument list)

The object that invokes a method is the calling object. Therefore the
expression

swimmingPool.doCircumference()

in the main method uses swimmingPool as the calling object to invoke the
doCircumference method of the Circle class. No arguments are needed because
this method has no parameters, but the empty parentheses must be present.
There are no variables in the main method for the circumference and the
area of the circle. The doCircumference and doArea methods are now invoked
within an output statement, so these values get printed out without being
stored anywhere. (This has nothing to do with object orientation; we could
have done this in version 2 of the program.) But there is also no declaration
in the main method for a variable called radius. There is a declaration for
newRadius, and newRadius receives the value entered by the user for the radius
of the circle. Therefore, isn't newRadius serving the same purpose as radius
did in the old program? No—this is rather subtle, so pay attention: While
newRadius holds the number the user wants for the circle radius, it is not itself
the radius of swimmingPool. The radius of swimmingPool is the instance vari-
able radius, and only methods of the class can change the instance variables of
an object of that class. The Circle class provides the setRadius method for this
purpose. The main method of SportsWorld must ask the object swimmingPool to
invoke setRadius to set the value of its radius equal to the value contained in
newRadius. The newRadius argument corresponds to the value parameter in the
setRadius method, which then gets assigned to the instance variable radius.

swimmingPool.setRadius (newRadius) ;

public void setRadius(double value)
//sets radius equal to value
{

radius = value;

}

The setRadius method is a void method because it returns no information to
the invoking method; it contains no return statement. The invocation of this
method is a complete Java statement.

Finally, the output statements that print the values of the circumference
and area also have swimmingPool invoke the getRadius method to return its cur-
rent radius value so it can be printed as part of the output. We could have used
the variable newRadius here instead. However, newRadius is what we THINK has
been used in the computation, whereas radius is what has REALLY been used.

Now that we understand the syntax, we can see that an output statement
such as

System.out.println("Here’s your output: " + answer);

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15

FIGURE 27

A Java Program with
Polymorphism and Inheritance

5:22 PM Page 53

—p—

asks the System.out object to invoke a println method using the string
parameter included in the parentheses. The System.out object is unusual in
that we do not have to explicitly create it using a “new” statement.

This completes version 3 of the SportsWorld program, a truly object-
oriented version. The main method creates a Circle object and repeatedly
requests that object to perform (or, technically, cause to have performed) the
appropriate methods of its class to set its own radius and compute its circum-
ference and area. Many people would say this is the only good way to write a
Java program!

V 6.3 One More Example

The object-oriented version of our SportsWorld program illustrates
encapsulation. All data and calculations concerning circles are encapsulated
in the Circle class. Let’s look at one final example that illustrates the other
two watchwords of 00P—polymorphism and inheritance.

Figure 27(a)-(d) shows four simple geometric shape classes. Figure 27(e)
is the application program that uses these classes. The main method creates
objects from these various classes and has those objects set their dimensions
and compute their areas. Each of these five classes is in a separate .java file of
the same name as the class.

//Class for circles. Area can be

//computed from radius.

public class Circle

{
public void setRadius(double value)
//sets radius equal to value

{

radius = value;

i

public double getRadius()
//returns current radius

{

return radius;

i

public double doArea()
//computes and returns area of a circle

{

return Math.PI * radius * radius;

i

//instance variable
private double radius;

(a) The Circle Class

6 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 54 CE

FIGURE 27
¥ A Java Program with //Class for rectangles. Area can be
& Polymorphism and Inheritance //computed from length and width.

(continued)

public class Rectangle

{
public void setWidth(double value)
//sets width equal to value

{

width = value;

public void setHeight(double value)
//sets height equal to value
{

height = value;

public double getWidth()
//returns width

{

return width;

public double getHeight()
//returns height
{

return height;

public double doArea()
//computes and returns area of a rectangle

{
return width*height;

//instance variables
protected double width, height;

(b) The Rectangle Class

//Class for squares. Area can be
//computed from side.
public class Square
{
public void setSide(double value)
//sets side equal to value

{

side = value;

public double getSide()
//returns side

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 55 CE

FIGURE 27

¥ A Java Program with {
Polymorphism and Inheritance return side;
(continued))

public double doArea()
//computes and returns area of a square

{

return side*side;

//instance variable
private double side;

(c) The Square Class

//Square2 is derived class of Rectangle,
//uses the inherited height and width
//properties and the inherited doArea method

public class Square2 extends Rectangle
{
public void setSide(double value)
//sets width and height equal to value
{
width = value;
height = value;

(d) The Square2 Class

//Computes areas of geometric shapes.
//Uses classes Circle, Rectangle, Square, Square2
public class Geometry
{
public static void main (String[] args)
{
Circle joe = new Circle();
joe.setRadius(23.5);
System.out.println("The area of a circle "
+ "with radius " + joe.getRadius()
+ " is " + joe.doArea());

Rectangle luis = new Rectangle();
luis.setWidth(12.4);
luis.setHeight(18.1);
System.out.println("The area of a rectangle "
+ "with dimensions " + luis.getWidth()
+ " and " + luis.getHeight()
+ " is " + luis.doArea());

Square anastasia = new Square();
anastasia.setSide(3);

6 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 56 CE

FIGURE 27

A Java Program with
Polymorphism and Inheritance
(continued)

System.out.println("The area of a square "
+ "with side " + anastasia.getSide()
+ " is " + anastasia.doArea());

Square2 tyler = new Square2();
tyler.setSide(4.2);
System.out.println("The area of a square "
+ "with side " + tyler.getWidth()
+ " is " + tyler.doArea());

(e) The Geometry Class—Main Method

The instance variables for each class represent the properties that any
object of the class possesses. A Circle object has a radius property, whereas a
Rectangle object has a width property and a height property. A Square object
has a side property, as one might expect, but a Square? object doesn’t seem to
have any properties, or for that matter any way to compute its area. We'll
explain the difference between the Square class and the Square2 class shortly.

The output (rounded to two decimal places for simplicity and wrapped to
fit on the page) after running the program in Figure 27 is

The area of a circle with radius 23.5 is 1734.95

The area of a rectangle with dimensions 12.4 and
18.1 is 224.44

The area of a square with side 3 is 9.0

The area of a square with side 4.2 is 17.64

In Figure 27 we see polymorphism at work, because each class has its own
doArea method. When the program executes, the correct method is used, on
the basis of the class to which the object invoking the method belongs. After
all, computing the area of a circle is quite different from computing the area
of a rectangle. The methods themselves are straightforward; they employ
assignment statements to set the dimensions and the usual formulas to
compute the area of a circle, rectangle, and square.

Square is a separate class with a side property and a doArea method. The
Square? class, however, recognizes the fact that squares are special kinds of
rectangles. The Square2 class is a subclass of the Rectangle class, as is indicated
by the reference in the header of the Square2 class that it extends the Rectan-
gle class. The Square2 class inherits the width and height properties from the
“parent” Rectangle class; the “protected,” rather than private, status of these
properties in the Rectangle class indicates that they can be extended to any
subclass. Square2 also inherits the setWidth, setHeight, getWidth, getHeight,
and doArea methods. In addition, Square2 has its own method, setSide, because
setting the value of the “side” makes sense for a square but not for an arbitrary
rectangle. What the user of the Square? class doesn’t know is that there really
isn't a “side” property; the setSide method merely sets the inherited width and
height properties to the same value. To compute the area, then, the doArea
method inherited from the Rectangle class can be used, and there is no need to
redefine it or even to copy the existing code. Here we see inheritance at work.

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 57 $

FIGURE 28
A Hierarchy of Geometric Classes

Shape class
Circle class Rectangle Triangle
class class
Square2
class

Inheritance can be carried through multiple “generations.” We might
redesign the program so that there is one “superclass” that is a general Shape
class, of which Circle and Rectangle are subclasses, with Square? a subclass of
Rectangle (see Figure 28 for a possible class hierarchy).

r 6.4 What Have We Gained?

Now that we have some idea of the flavor of object-oriented programming, we
should ask what we gain by this approach. There are two major reasons why
00P is a popular way to program:

e Software reuse

e A more natural “worldview”

SOFTWARE REUSE. Manufacturing productivity took a great leap forward
when Henry Ford invented the assembly line. Automobiles could be assembled
using identical parts so that each car did not have to be treated as a unique
creation. Computer scientists are striving to make software development more
of an assembly-line operation and less of a handcrafted, start-over-each-time
process. Object-oriented programming is a step toward this goal: A useful class
that has been implemented and tested becomes a component available for use
in future software development. Anyone who wants to write an application
program involving circles, for example, can use the already written, tried, and
tested Circle class and simply create Circle objects as needed. As the “parts
list” (the class library) grows, it becomes easier and easier to find a “part”
that fits, and less and less time has to be devoted to writing original code. If
the objects from a class don't quite fit, perhaps the class can be modified by
creating a subclass; this is still less work than starting from scratch. Software
reuse implies more than just faster code generation. It also means improve-
ments in reliability; these classes have already been tested, and if properly

6 Object-Oriented Programming 57

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 58 $

used, they will work correctly. And it means improvements in maintainability.
Thanks to the encapsulation property of object-oriented programming,
changes can be made in the details of class methods without affecting other
code, although such changes require retesting the classes.

A MORE NATURAL “WORLDVIEW.” The traditional view of programming is
procedure-oriented, with a focus on tasks, subtasks, and algorithms. But
wait—didn't we talk about subtasks in 00P? Haven't we said that computer
science is all about algorithms? Does O0P abandon these ideas? Not at all. It is
more a question of when these ideas come into play. Object-oriented program-
ming recognizes that in the “real world,” tasks are done by entities (objects).
Object-oriented program design begins by identifying those objects that are
important in the domain of the program because their actions contribute to
the mix of activities going on in the banking enterprise, the medical office, or
wherever. Then it is determined what data should be associated with each
object and what subtasks the object contributes to this mix. Finally, an algo-
rithm to carry out each subtask must be designed.

Object-oriented programming is an approach that allows the programmer
to more closely model or simulate the world as we see it, rather than mimick-
ing the sequential actions of the Von Neumann machine. It provides another
buffer between the real world and the machine, another level of abstraction in
which the programmer can create a virtual problem solution that is ultimately
translated into electronic signals on hardware circuitry.

Finally, we should mention that a graphical user interface, with its win-
dows, icons, buttons, and menus, is an example of object-oriented program-
ming at work. A general button class, for example, can have properties of
height, width, location on the screen, text that may appear on the button,
and so forth. Each individual button object has specific values for those prop-
erties. The button class can perform certain services by responding to mes-
sages, which are generated by events (for example, the user clicking the
mouse on a button triggers a “mouse-click” event). Each particular button
object individualizes the code to respond to these messages in unique ways.
We will not go into details of how to develop graphical user interfaces in Java,
but in the next section you will see a bit of the programming mechanics that
can be used to draw the graphics items that make up a visual interface.

PRACTICE PROBLEMS

1. What is the output from the following section of code if it is added
to the main method of the Java program in Figure 27?

Square one = new Square();
one.setSide(10);
System.out.println("The area of a square "
+ "with side " + one.getSide()
+ " is " + one.doArea());

2. In the Shape hierarchy described in this section, suppose that the
Triangle class includes a doArea method. What two properties should
any triangle object have?

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 59 $

7

Graphical Programming | 4&

e | [FIGURE 29

An Example of the Use of

: Graphics to Simplify Machine
¢ Operation

The programs that we have looked at so far all produce text output—output
composed of the characters {A...Z,a...z 0...9}along with a few punc-
tuation marks. For the first 30 to 35 years of software development, text was
virtually the only method of displaying results in human-readable form, and
in those early days it was quite common for programs to produce huge stacks
of alphanumeric output. These days an alternative form of output—
graphics—has become much more widely used. With graphics, we are no
longer limited to 100 or so printable characters; instead, programmers are free
to construct whatever shapes and images they desire.

The intelligent and well-planned use of graphical output can produce some
phenomenal improvements in software. We discussed this issue in Chapter 6,
where we described the move away from the text-oriented operating systems of
the 1970s and 1980s, such as MS-DOS and VMS, to operating systems with more
powerful and user-friendly graphical user interfaces (GUIs), such as Windows 7,
Windows 8 and Mac 0S X. Instead of requiring users to learn dozens of complex
text-oriented commands for such things as copying, editing, deleting, moving,
and printing files, GUIs can present users with simple and easy to understand
visual metaphors for these operations. In Figure 29a, the operating system pre-
sents the user with icons for printing, deleting, or copying a file. In Figure 29b,
dragging a file to the printer icon prints the file.

Not only does graphics make it easier to manage the tasks of the operating
system, it can help us visualize and make sense of massive amounts of output
produced by programs that model complex physical, social, and mathematical
systems. (We will discuss modeling and visualization in Chapter 13.) Finally,
there are many applications of computers that would simply be impossible with-
out the ability to display output visually. Applications such as virtual reality,
computer-aided design/computer-aided manufacturing (CAD/CAM), games and
entertainment, medical imaging, and computer mapping would not be anywhere
near as important as they are without the enormous improvements that have
occurred in the areas of graphics and visualization.

& myFile Pt

7]]

Del=te

(b)

7 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 60 $

So, we know that graphical programming is important. The question is,
What features must be added to a programming language like Java to produce
graphical output?

p» 7.1 Graphics Hardware

Modern computer terminals use what is called a bitmapped display, in which
the screen is made up of thousands of individual picture elements, or pixels,
laid out in a two-dimensional grid. These are the same pixels used in visual
images, as discussed in Chapter 4. In fact, the display is simply one large
visual image. The number of pixels on the screen varies from system to sys-
tem; typical values range from 800 X 600 up to 1560 X 1280. Terminals with
a high density of pixels are called high-resolution terminals. The higher the
resolution—that is, the more pixels available in a given amount of space—the
sharper the visual image because each individual pixel is smaller. However, if
the screen size itself is small, then a high resolution image can be too tiny to
read. A 30" wide-screen monitor might support a resolution of 2560 X 1600,
but that would not be suitable for a laptop screen. In Chapter 4 you learned
that a color display requires 24 bits per pixel, with 8 bits used to represent the
value of each of the three colors red, green, and blue. The memory that stores
the actual screen image is called a frame buffer. A high-resolution color display
might need a frame buffer with (1560 X 1280) pixels X 24 bits/pixel =
47,923,000 bits, or about 6 MB, of memory for a single image. (One of the prob-
lems with graphics is that it requires many times the amount of memory
needed for storing text.)

The individual pixels in the display are addressed using a two-dimensional
coordinate grid system, the pixel in the upper-left corner being (0, 0). The
overall pixel-numbering system is summarized in Figure 30. The specific
values for maxX and maxY in Figure 30 are, as mentioned earlier, system-
dependent. (Note that this coordinate system is not the usual mathematical
one. Here the origin is in the upper-left corner, and y values are measured

downward.)
FIGURE 30

Pixel-Numbering System in a (0, 0) (1,0 (2, 0) (maxX, 0)

Bitmapped Display [[(] LI ([]
o, 1 (1.1 (2, 1) (maxX, 1)

[[[000 []
0, 2) (1, 2) (2, 2) (maxX, 2)

[J [J [e e [
(0, maxY) (1, maxY) (2, maxY) (maxX, maxY)

[[[] []

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 61 $

FIGURE/31

W Display of Information on the
¥ Terminal

24 24

Hardware
|

47 ooof | A7 - ®

Frame buffer Screen

The terminal hardware displays on the screen the frame buffer value of
every individual pixel. For example, if the frame buffer value on a color monitor
for position (24, 47) is RGB (0, 0, 0), the hardware sets the color of the pixel
located at column 24, row 47 to black, as shown in Figure 31. The operation
diagrammed in Figure 31 must be repeated for all of the 500,000 to 2 million
pixels on the screen. However, the setting of a pixel is not permanent; on the
contrary, its color and intensity fade quickly. Therefore, each pixel must be
“repainted” often enough so that our eyes do not detect any “flicker,” or change
in intensity. This requires the screen to be completely updated, or refreshed,
30-50 times per second. By setting various sequences of pixels to different col-
ors, the user can have the screen display any desired shape or image. This is the
fundamental way in which graphical output is achieved.

@ 7.2 Graphics Software

To control the setting and clearing of pixels, programmers use a collection of
software modules that are part of a special package called a graphics library.
Virtually all modern programming languages, including Java, come with an
extensive and powerful graphics library for creating a wide range of shapes and
images. Typically, an “industrial strength” graphics library includes dozens or
hundreds of modules for everything from drawing simple geometric shapes like
lines and circles, to creating and selecting colors, to more complex operations
such as displaying scrolling windows, pull-down menus, and buttons.

The Java library includes a package called the Abstract Windowing Toolkit,
usually abbreviated AWT. This toolkit contains dozens of methods that allow
users to create powerful interfaces. The AWT package includes methods for

e (reating the basic set of GUI components, including windows, buttons,
text boxes, icons, and menus

¢ Allowing the user to control the size and placement of these components
e Allowing the user to define special objects called listeners that auto-

matically activate methods when screen events, such as moving or
clicking the mouse, or selecting a menu item, occur

In 1998, Sun introduced a package of even more powerful GUI components,
commonly called Swing components. Both the AWT package and the Swing
package are huge, and their descriptions are well beyond the scope of this

7 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 62 $

text. In this discussion we restrict our focus to a modest subset of methods.
Although the set is small, the graphics methods we present give you a good
idea of what visual programming is like, and will allow you to display some
interesting, nontrivial images on the screen. (To access these Java graphics
methods, you must include the statement

import java.awt.*

at the beginning of your program. This makes the classes in the Java AWT
available for your program to use.)

In Java, the primary means of drawing geometric shapes is with the class
called Graphics. Every open window contains an instance of this class called its
graphics context, which by tradition is represented by the letter g. When you
open a window you cannot see this “graphics context object,” but it is there,
and it responds to messages (i.e., method invocations) that ask it to display
various shapes and patterns within the window. It carries out this drawing
operation using the identical bitmapped techniques described previously.

To create a new window for our drawings (called a frame in Java), we can
use the following sequence of three commands:

Frame f = new Frame("Example 1");
f.setSize (500, 500);
f.setVisible(true);

The first line creates a new window called f containing the label “Example 1”
in the title bar at the top of the window. The second line sets the size of this
window at 500 pixels X 500 pixels. When setting the window size, be sure that
you do not exceed the maximum value allowed on your system. The last line
makes the window visible on the screen. After executing these three lines,
your screen should display the following:

] Example 1 =

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 63 $

Now, to obtain the graphics context of the window f created above, we
use the method called getGraphics. This method returns the graphics context
of the window to which the message is sent and assigns it to the Graphics
object g:

Graphics g;
g = f.getGraphics();

We can now send whatever drawing commands we want to g, and it will display
the shapes that we ask for inside window f.

What types of messages does g respond to? There are literally dozens of
drawing commands in the Graphics library that allow you to (1) draw geometric
shapes (e.g., lines, rectangles, ovals, polygons); (2) set, change, and define col-
ors; (3) fillin or shade objects; (4) create text in a range of fonts and sizes; and
(5) produce many different types of graphs and charts. There are far too many
methods to discuss here; instead, we introduce a few of the most important
and most basic methods, to give you an idea of the type of graphic operations
available in Java. You will have a chance to use these operations in the exercises
at the end of this module.

1. drawLine(int x1, int y1, int x2, int y2). This draws a straight line from
point (x1, y1) on the screen (measured in pixels) to point (x2, y2).
Thus the operation

g.drawLine (100, 100, 200, 200);

would produce something like the following image:

] Example 1 =

7 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 64 CE

FIGURE |32
Complete Java Program for import java.awt.*;
Drawing a Line import java.util.x*;

public class Line

{

public static void main(String[] args)

{
double response = 0;
Scanner inp = new Scanner(System.in);

Frame f = new Frame("Example 1");
f.setSize (500, 500);
f.setVisible(true);

Graphics g;
g = f.getGraphics();

while (response < 10000)

{
g.drawLine (100, 100, 200, 200);
response = response + 1;

System.out.print("Type 1 to exit: ");
response = inp.nextDouble();
System.exit (0);

On your system, the exact location and length of the line may be
slightly different because of minor differences in screen resolution.
You may also need to write some code to hold the image on the screen.
Figure 32 shows a complete program to draw the line and repaint the
image on the screen a fixed number of times; user input closes the
program.

What actually happens internally when you execute a drawlLine
command? The terminal hardware determines (using some simple
geometry and trigonometry) exactly which pixels on the screen must
be “turned on” (i.e., set to the current value of the drawing color) to
draw a straight line between the specified coordinates. For example, if
the drawing color is black, then the command drawline(1, 1, 4, 4)
causes the following four pixels in the frame buffer to be set to the
RGB value (0, 0, 0).

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 65 $

(0, 0)
o o o o o o
o ° o o o o
o o ° o o o
o o o ° o o -
o o o o ° o
o o o o o o

Now, when the hardware draws the frame buffer on the screen,
these four pixels are colored black. Because pixels are only about
1/100th of an inch apart, our eyes do not perceive four individual
black dots but an unbroken line segment.

2. drawOval(int x, int y, int width, int height). This operation draws an
oval that fits within a rectangle whose upper-left corner is located at
(x, y) and whose dimensions are the specified width and height. If the
width and height values are the same, you produce a circle. Thus, the
following two commands

g.drawoval (50, 50, 20, 100);
g.drawoval(200, 200, 30, 30);

7 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 66 $

produce the following image:

m Example 1 =

O

Now, using the two commands we have just introduced—drawLine and

drawOval—we can produce an image of the well-known international
traffic sign for No Entry:

g.drawOval (100, 100, 80, 80);
g.drawLine(168, 112, 112, 168);

] Example 1 =

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 67 $

However, we also know that this No Entry sign sometimes appears in
either blue or red rather than black. Java allows us to control the
drawing color using the setColor method from the Color class.

3. setColor(Color c). This method allows us to set our drawing color to any
one of the following 12 preset colors: red, yellow, blue, orange, pink,
cyan, magenta, black, white, gray, lightGray, and darkGray. (Java also
lets you define totally new colors based on the intensities of their red,
green, and blue components. We won't discuss that feature here.) Using
this new method, we can redraw our traffic sign in blue as follows:

g.setColor(Color.blue);
g.drawOval (100, 100, 80, 80);
g.drawLine (168, 112, 112, 168);

which produces the next image. Note that executing the operation
setColor does not change the color of images already drawn, only the
color of any new images subsequently placed on the screen.

] Example 1 HE

The last thing we might want to add to our traffic sign is the phrase “No
Entry”. Java uses the method drawString to put text into a drawing:

4. drawString(String str, int x, int y). This method writes the string str
into the image. The lower-left position of the first character of the
string is placed at position (x, y). Thus, to put the desired text into the
drawing, we could write the following four lines:

g.setColor(Color.blue);

g.drawOval (100, 100, 80, 80);
g.drawString("No Entry", 112, 145);
g.drawLine(168, 112, 112, 168);

7 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 68 $

which produce the desired image:

| Example 1 m[=]

(There are a number of Java methods for controlling font size and font
type, but we will not mention them here.)
There are other drawing commands to produce a variety of inter-
esting shapes:
5. drawRect(int x, int y, int width, int height). This method draws a rec-
tangle whose upper-left corner is at position (x, y) and whose dimen-
sions are the specified height and width.

6. drawRoundRect(int x, int y, int width, int height, int arcWidth, int
arcHeight). This method draws a rectangle with smoothly rounded cor-
ners. For example, the command

g.drawRoundRect (10, 10, 100, 100, 50, 50);

produces:

] Example 1 =]

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter java.gxd 1/17/15 5:22 PM Page 69 $

The parameters arcWidth and arcHeight set the diameter of the circles
whose arcs are used to form the rounded edges of the rectangle, as
shown in the next diagram.

ArcHeight SN
(used for the top W< N \
two rounded 1
cornders) /

= N
/ N~ ArcWidth
|—04 (used for the

\ bottom two
M rounded corners)

Sometimes we want to produce a filled shape, rather than just an out-
line. Java has a number of methods to draw shapes whose insides are
filled using the currently declared drawing color:

7. fillRect(int x, int y, int width, int height)

8. fillRoundRect(int x, int y, int width, int height, int arcWidth, int
arcHeight)

9. fillOval(int x, int y, int height, int width)

All three of the above commands draw the specified shape with its
insides filled with whatever color you have specified. (Note: If you
have not specified a drawing color, then the shape is filled with the
default color, which is usually black.)

If we define a screen of size 300 X 300, then the following
command:

g.filloval(80, 80, 300, 200);

produces the next image. Notice that the portions of the circle beyond
the edge of the window are discarded, an operation called clipping. All
methods in the graphics library clip those parts of an image that lie
outside its window boundaries.

7 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter_ java.gxd

1/17/15

5:22 PM Page 70 $

L] Example 1 =]

This has been a brief introduction to the topic of graphics software. As
mentioned earlier, the number of methods in the Java Graphics class—or in
any large-scale production graphics package—is much, much larger. However,
the nine operations we have introduced are sufficient to allow you to produce
some interesting images and, even more important, give you an appreciation
for how visually oriented software is developed.

PRACTICE PROBLEM

Write the sequence of commands to draw the following “house” on
the graphics window:

4)

B

- J

Create the house using four rectangles (for the base of the house,
the door, and the two windows), two line segments (for the roof),
and one filled circle (for the doorknob). Locate the house anywhere
you want on the window.

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter_ java.gxd

8

1/17/15 5:22 PM Page 71 $

Conclusion

~

[

=

In this module we looked at one representative high-level programming lan-
guage, Java. Of course, there is much about this language that has been left
unsaid, but we have seen how the use of a high-level language overcomes
many of the disadvantages of assembly language programming, creating a
more comfortable and useful environment for the programmer. In a high-level
language, the programmer need not manage the storage or movement of data
values in memory. The programmer can think about the problem at a higher
level, can use program instructions that are both more powerful and more nat-
ural language-like, and can write a program that is much more portable
among various hardware platforms. We also saw how modularization, through
the use of methods and parameters, allows the program to be more cleanly
structured and how object-oriented programming allows a more intuitive view
of the problem solution and provides the possibility for reuse of helpful
classes. We even had a glimpse of graphical programming.

Java is not the only high-level language. You might be interested in look-
ing at the other online language modules for languages similar to Java (C++,
C#, Python, and Ada). Still other languages take quite a different approach to
problem solving. In Chapter 10 of Invitation to Computer Science, we look at
some other languages and language approaches and also address the question
of why there are so many different programming languages.

8 Conclusion

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter_ java.gxd

1/17/15 5:22 PM Page 72

EXERCISES

. Write a Java declaration for one real number quantity
called rate, initialized to 5.0.

. Write a single Java statement to declare two integer
quantities called orderOne and orderTwo, each initialized
to 0.

. A Java main method needs one character variable choice,
one integer variable inventory, and one real number vari-
able sales. Write the necessary declarations; initialize
choice to the blank character and the other values to
zero.

. a. Write a Java output statement to print the value of PI
supplied by the Math library.

b. Write a Java declaration for a constant quantity to be
called EVAPORATION_RATE, which is to have the value
6.15.

. You want to write a Java program to compute the aver-
age of three quiz grades for a single student. Decide what
variables your program needs, and write the necessary
declarations.

. Given the declaration

int[] list = new int[10];

how do you refer to the eighth number in the array?
. An array declaration such as

int[][] table = new int[5][3];

represents a two-dimensional table of values with 5 rows
and 3 columns. Rows and columns are numbered in Java
starting at 0, not at 1. Given this declaration, how do
you refer to the marked cell that follows?

10.

11.

12.

—p—

Write Java statements to prompt for and collect values
for the time in hours and minutes (two integer quanti-
ties). Assume the declarations

int hours = 0, minutes = 0;

Scanner inp = new Scanner (System.in);

have already been made.

. A program computes two integer quantities invento-

ryNumber and numberOrdered. Write a single output
statement that prints these two quantities along with
appropriate text information.

The integer quantities age and weight currently have the
values 32 and 187, respectively. Write the exact output
generated by the following statement:

System.out.println("Your age is"
+ age + "and your weight is" +
weight + ".");

Output that is a real number can be formatted so that
the number is rounded to a specified number of decimal
places. To do this, add the following statement at the
very beginning of the program

import java.text.*;

and add the following at the beginning of the main
method body:

DecimalFormat p = new
DecimalFormat("0.00");

where the desired format for the output is given in
quotes—for example, “0.00” is requesting that the out-
put be rounded to two decimal digits. Output statements
are then modified as follows (from the SportsWorld
program):

System.out.println("The " +
"circumference for a pool" +
" of radius " + radius + " is "
+ p.format(circumference));

Write Java formatting and output statements to generate
the following output, assuming that density is a type
double variable with the value 63.78:

The current density is 63.8, to
within one decimal place.

What is the output after the following sequence of state-
ments is executed? (Assume the integer variables a and b
have been declared.)

a = 12;
b = 20;
b=Db+ 1;
a =a + b;

System.out.println(2*a);

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter_ java.gxd

1/17/15 5:22 PM Page 73

13. Write a Java main method that gets the length and width
of a rectangle from the user and computes and writes out
the area.

14. a. In the SportsWorld program of Figure 14, the user
must respond with “C” to choose the circumference
task. In such a situation, it is preferable to accept
either uppercase or lowercase letters. Rewrite the con-

dition in the program to allow this.

b. In the SportsWorld program, rewrite the condition for
continuation of the program to allow either an upper-
case or a lowercase response.

15. Write a Java main method that gets a single character
from the user and writes out a congratulatory message
if the character is a vowel (a, e, i, o, or u), but other-
wise writes out a “You lose, better luck next time”
message.

16. Insert the missing line of code so that the following adds
the integers from 1 to 10, inclusive.

0;

g

top = 10
(score <= top)

while
{
value = value + score;
- - - - //the missing line

}

17. What is the output after the following main method is
executed?

public static
args)

{

void main(Stringf[]

int low = 1;
int high = 20;
while (low < high)
{
System.out.println(low
+ " " + high);
low = low + 1;
high = high - 1;
}
}

18. Write a Java main method that outputs the even integers
from 2 through 30, one per line. Use a while loop.

19. In a while loop, the Boolean condition that tests for
loop continuation is done at the top of the loop,
before each iteration of the loop body. As a conse-
quence, the loop body might not be executed at all.
Our pseudocode language of Chapter 2 contains a
do-while loop construction, in which a test for loop
termination occurs at the bottom of the loop rather
than at the top, so that the loop body always executes
at least once. Java has a do-while statement that tests

—p—

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

for loop continuation at the bottom of the loop. The
form of the statement is

do
S1;
while (Boolean condition);

where, as usual, S1 can be a compound statement. Write
a Java main method to add up a number of nonnegative
integers that the user supplies and to write out the total.
Use a negative value as a sentinel, and assume that the
first value is nonnegative. Use a do-while statement.

Write a Java program that asks for a duration of time in
hours and minutes and writes out the duration only in
minutes.

Write a Java program that asks for the user’s age in
years; if the user is under 35, then quote an insurance
rate of $2.23 per $100 for life insurance; otherwise,
quote a rate of $4.32.

Write a Java program that reads integer values until a 0
value is encountered, then writes out the sum of the pos-
itive values read and the sum of the negative values
read.

Write a Java program that reads in a series of positive
integers and writes out the product of all the integers
less than 25 and the sum of all the integers greater than
or equal to 25. Use 0 as a sentinel value.

a. Write a Java program that reads in 10 integer quiz
grades and computes the average grade. (Hint:
Remember the peculiarity of integer division.)

b. Write a Java program that asks the user for the num-
ber of quiz grades, reads them in, and computes the
average grade.

Write a void Java method that receives two integer argu-
ments and writes out their sum and their product.

Write a nonvoid Java method that receives a real number
argument representing the sales amount for videos
rented so far this month. The method asks the user for
the number of videos rented today and returns the
updated sales figure to the main method. All videos rent
for $4.25.

Write a nonvoid Java method that receives three integer
arguments and returns the maximum of the three values.

a. Write a Java doPerimeter method for the Rectangle
class of Figure 27.

b. Write Java code that creates a new Rectangle object
called yuri, then writes out information about this
object and its perimeter using the doPerimeter method
from part (a).

Draw a class hierarchy diagram similar to Figure 28 for
the following classes: Student, Undergraduate_Student,
Graduate_Student, Sophomore, Senior, PhD_Student.

Exercises ‘ 73

©2016 Course Technology, a part of Cengage Learning.

o

C8814 chapter_ java.gxd

30.

31.

32.

33.

1/17/15 5:22 PM Page 74

Imagine that you are writing a program using an object-
oriented programming language. Your program will be
used to maintain records for a real estate office. Decide
on one class in your program and a service that objects
of that class might provide.

Write a Java program to balance a checkbook. The main
method of the CheckbookApp class should get the initial
balance from the user, allow the user to process as
many transactions as desired, and write the final
balance. The Checkbook class should contain two public
static methods to handle deposits and checks, respec-
tively. Each method should collect and write out the
amount of the transaction, and compute, write out, and
return the new balance. (See Exercise 11 on how to for-
mat output to two decimal places, as is usually done
with monetary values.)

Write a Java program to compute the cost of carpeting
three rooms. Room objects have dimensions of width and
length, and they can compute and return their area and
(given the price per square unit) the cost to carpet them-
selves. The main method of the RoomApp class should
create a Room object and use a loop to process each of
three rooms: get the dimensions and carpet price, write
out the individual areas and costs, add the three costs,
then write out the total cost. (See Exercise 11 on how to
format output to two decimal places, as is usually done
with monetary values.)

Determine the resolution on the screen on your computer
(ask your instructor or the local computer center how to
do this). Using this information, determine how many
bytes of memory are required for the frame buffer to
store the following:

a. A black-and-white image (1 bit per pixel)

b. A grayscale image (8 bits per pixel)

c. A color image (24 bits per pixel)

34.

35.

36.

13175

—p—

Using the drawline command described in Section 7.2,
draw an isosceles triangle with the following configuration:

(100, 30)

(50, 100) (150, 100)

Discuss what problem the display hardware might
encounter while attempting to execute the following oper-

ations, and describe how this problem could be solved.
drawLine(1l, 1, 4, 5);

Draw a square with sides 100 pixels in length. Then
inscribe a circle of radius 50 inside the square. Position the
square so its upper-left corner is at position (60, 100).

Create the following three labeled rectangular buttons:

Start Stop Pause

38.

Have the space between the Start and Stop buttons be
the same as the space between the Stop and Pause but-
tons.

Create the following image of a “teeter-totter”:

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 75 $

ANSWERS TO PRACTICE PROBLEMS

Section 2 1. the first three
martinBradley (camel case)
C3P_OH (although best not to use the underscore character)
Amy3 (Pascal case)
3Right (not acceptable, begins with digit)
double (not acceptable, Java keyword)

2. int Number;
3. final double TAX RATE = 5.5;
4. hits[7]
Section 3.1 1. System.out.print("Enter quantity as an integer: ");

quantity = inp.nextInt();
2. System.out.println("The average high temperature "

+ "in San Diego for the month of May is "
+ average);

. This isgoodbye, Steve

Section 3.2 1. next = newNumber;

. 55.0

Section 3.3 1. 30

N = N = W

11
13
15
17
19
21
3. Yes
4.6
5. if (night==day)
System.out.println("Equal");

Answers to Practice Problems

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 76 $

Section 4 1.

//program to read in and write out
//user’s first and last initials

import java.util.*;
public class Practice
{
public static void main(String[] args)
{
String response = " ";
char initiall, initial2;
Scanner inp = new Scanner(System.in);

System.out.print("Enter your first initial: ");
response = inp.next();

initiall = response.charAt(0);
System.out.print("Enter your last initial: ");
response = inp.next();

initial2 = response.charAt(0);

System.out.println("Your initials are "
+ initiall + initial2);

//program to compute cost based on price per item
//and quantity purchased

import java.util.*;
public class Cost

{
public static void main(String[] args)
{
double price = 0.0, cost = 0.0;
int quantity = 0;
Scanner inp = new Scanner(System.in);
System.out.println("What is the price of the item? ");
price = inp.nextDouble();
System.out.println("How many of this item are "
+ "being purchased? ");
quantity = inp.nextInt();
cost = price*quantity;
System.out.println("The total cost for this "
+ "item is $" + cost);
b
}

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 77 $

3.
//program to test a number relative to 5
//and write out the number or its double
import java.util.*;
public class FiveTester
{
public static void main(String[] args)
{
int number = 0;
Scanner inp = new Scanner(System.in);
System.out.print("Enter a number: ");
number = inp.nextInt();
if (number < 5)
System.out.println("The number is " + number);
else
System.out.println("Twice the number is "
+ 2*number);
¥
¥
4.

//program to collect a number, then write all
//the values from 1 to that number

import java.util.*;
public class Counter

{
public static void main(String[] args)
{
int number = 0; //number user enters
int counter = 1; //counter to control loop
Scanner inp = new Scanner (System.in);
System.out.print("Enter a positive number: ");
number = inp.nextInt();
while (counter <= number)
{
System.out.println(counter);
counter = counter + 1;
}
b
}

Answers to Practice Problems

©2016 Course Technology, a part of Cengage Learning.

o

C8814_chapter java.gxd 1/17/15 5:22 PM Page 78 $

Section 5.3 1. 20
2. 20
3.7
14
10 (number was passed by value, it cannot be
permanently changed by dolt)
4.a. public static double tax(double subtotal)
b. return subtotal * 0.55;
c. System.out.println("The tax is "
+ Sales.tax(subtotal));
Section 6.4 1. The area of a square with side 10 is 100.0
2. Height and Base

Section 7.2 .drawRect (150, 150, 250, 200);

.drawRect (170, 170, 40, 40);
.drawRect (340, 170, 40, 40);
.drawRect (250, 270, 50, 80);
.drawLine (150, 150, 275, 75);
.drawLine (275, 75, 400, 150);
.filloval (290, 310, 5, 5);

(ot Juteyte e Jutoautoe]

Programming in Java

©2016 Course Technology, a part of Cengage Learning.

o

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2015-01-17T17:25:05+0530
	Preflight Ticket Signature

