
1

Programming in Ada

Online module to accompany Invitation to Computer Science, 7th Edition ISBN-10:
1305075773; ISBN-13: 9781305075771 (Cengage Learning, 2016).

1. Introduction to Ada
1.1 A Simple Ada Program
1.2 Creating and Running an Ada Program

2. Virtual Data Storage
3. Statement Types

3.1 Input/Output Statements
3.2 The Assignment Statement
3.3 Control Statements

4. Another Example
5. Managing Complexity

5.1 Divide and Conquer
5.2 Using Functions/Procedures
5.3 Writing Functions/Procedures
5.4 An Ada Feature: User-Defined Subtypes

6. Object-Oriented Programming
6.1 What Is It?
6.2 Ada and OOP
6.3 One More Example
6.4 What Have We Gained?

7. Graphical Programming
7.1 Graphics Hardware
7.2 Graphics Software

8. Conclusion
E X E R C I S E S

A N S W E R S T O P R A C T I C E P R O B L E M S

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 1

1 Introduction to Ada

Hundreds of high-level programming languages have been developed; a
fraction of these have become viable, commercially successful languages.
There are a half-dozen or so languages that can illustrate some of the concepts
of a high-level programming language, but this module uses Ada for this
purpose. The Ada language was developed by the United States Department of
Defense in the 1980s and upgraded to include object-oriented capabilities in
the mid-1990s. Ada is presented in this module as an example of a language
that can carry out all of the tasks expected of a modern programming
language, but it has a rather different syntax from the C-like languages of C,
C++, C#, and Java. The major difference between Ada and these languages is
the manner in which sections of code are delimited. In C-like languages, curly
braces are used to delimit code sections, e.g., {. . .}. In Ada, keywords are
used as delimiters, e.g., BEGIN . . . END.

Our intent here is not to make you an expert programmer—any more than
our purpose in Chapter 4 was to make you an expert circuit designer. Indeed,
there is much about the language that we will not even discuss. You will,
however, get a sense of what programming in a high-level language is like, and
perhaps you will see why some people think it is one of the most fascinating
of human endeavors.

1.1 A Simple Ada Program

Figure 1 shows a simple but complete Ada program. Even if you know nothing
about the Ada language, it is not hard to get the general drift of what the
program is doing.

2 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

-- Computes and outputs travel time

-- for a given speed and distance

-- Written by J. Q. Programmer, 6/15/16

WITH TEXT_IO;

PROCEDURE TravelPlanner IS

PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

PACKAGE FLO_IO IS NEW TEXT_IO.FLOAT_IO(FLOAT);

A Simple Ada Program

FIGURE 1

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 2

Someone running this program (the “user”) could have the following
dialogue with the program, where boldface indicates what the user types:

Enter your speed in mph: 58
Enter your distance in miles: 657.5
At 58 mph, it will take

1.13362E+01 hours to travel 6.57500E+02 miles.

The general form of a typical Ada program is shown in Figure 2. To compare
our simple example program with this form, we have reproduced the example
program in Figure 3 with a number in front of each line. The numbers are
there for reference purposes only; they are not part of the program.

Lines 1–3 in the program of Figure 3 are Ada comments. Anything
appearing on a line after the double dash (--) is ignored by the compiler; it is
treated as a comment in the assembly language programs of Chapter 6.

31 Introduction to Ada

©2016 Course Technology, a part of Cengage Learning.

speed : INTEGER; -- rate of travel

distance : FLOAT; -- miles to travel

time : FLOAT; -- time needed for this travel

BEGIN

TEXT_IO.PUT(“Enter your speed in mph: ”);

INT_IO.GET(speed);

TEXT_IO.PUT(“Enter your distance in miles: ”);

FLO_IO.GET(distance);

time := distance / FLOAT(speed);

TEXT_IO.PUT(“At ”);

INT_IO.PUT(speed);

TEXT_IO.PUT(“ mph, ”);

TEXT_IO.PUT(“it will take ”);

TEXT_IO.NEW_LINE;

FLO_IO.PUT(time);

TEXT_IO.PUT(“ hours to travel ”);

FLO_IO.PUT(distance);

TEXT_IO.PUT(“ miles.”);

TEXT_IO.NEW_LINE;

END TravelPlanner;

A Simple Ada Program
(continued)

FIGURE 1

prologue comment [optional]

with clauses

procedure name

functions/procedures [optional]

declaratives

begin

code

end name

The Overall Form of a Typical
Ada Package Body Program

FIGURE 2

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 3

4 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

1. -- Computes and outputs travel time

2. -- for a given speed and distance

3. -- Written by J. Q. Programmer, 6/15/16

4.

5. WITH TEXT_IO;

-- USE TEXT_IO;

6.

7. PROCEDURE TravelPlanner IS

8. PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

9. PACKAGE FLO_IO IS NEW TEXT_IO.FLOAT_IO(FLOAT);

10.

11. speed : INTEGER; -- rate of travel

12. distance : FLOAT; -- miles to travel

13. time : FLOAT; -- time needed for this travel

14.

15. BEGIN

16.

17. TEXT_IO.PUT(“Enter your speed in mph: ”);

18. INT_IO.GET(speed);

19. TEXT_IO.PUT(“Enter your distance in miles: ”);

20. FLO_IO.GET(distance);

21.

22. time := distance / FLOAT(speed);

23.

24. TEXT_IO.PUT(“At ”);

25. INT_IO.PUT(speed);

26. TEXT_IO.PUT(“ mph, ”);

27. TEXT_IO.PUT(“it will take ”);

28. TEXT_IO.NEW_LINE;

29. FLO_IO.PUT(time);

30. TEXT_IO.PUT(“ hours to travel ”);

31. FLO_IO.PUT(distance);

32. TEXT_IO.PUT(“ miles.”);

33. TEXT_IO.NEW_LINE;

34. END TravelPlanner;

The Program of Figure 1
(line numbers added for
reference)

FIGURE 3

Although the computer ignores comments, they are important to include in a
program because they give information to the human readers of the code.
Every high-level language has some facility for including comments, because
understanding code that someone else has written (or understanding your
own code after a period of time has passed) is very difficult without the notes
and explanations that comments provide. Comments are one way to document
a computer program to make it more understandable. The comments in the
program of Figure 3 describe what the program does plus tell who wrote the
program and when. These three comment lines together make up the pro-
gram’s prologue comment (the introductory comment that comes first).
According to the general form of Figure 2, the prologue comment is optional,
but providing it is always a good idea. It’s almost like the headline in a news-
paper, giving the big picture up front.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 4

Blank lines in Ada programs are ignored and are used, like comments, to
make the program more readable by human beings. In our example program,
we’ve used blank lines (lines 4, 6, 10, 14, 16, 21, 23) to separate sections of
the program, visually indicating groups of statements that are related.

Before looking at the details of the remaining code line by line, it is
important to know that Ada programs are constructed from a collection of
packages. Each package consists of two sets of code, an optional specifica-
tion, and a body. The code shown in Figures 1 and 3 has only a body, but it
is still part of a package. When referencing one package from within
another package—for example, the TEXT_IO package from within the pack-
age being written (the TravelPlanner program)—it is necessary to first iden-
tify that package. This is accomplished by adding a with clause to the
package being written (line 5). The core Ada language does not provide a
way to get data into a program or for a program to display results. The
TEXT_IO package contains code for these purposes. Line 5 tells the compiler
to look in the TEXT_IO package for the definition of any names not specifi-
cally defined within the program. In this program, GET, PUT, and NEW_LINE
(used to read input data from the keyboard, write output to the screen, and
start a new output line, respectively) obtain their meaning from the
TEXT_IO package. One way to reference these code segments is to prefix the
name with the name of its package, e.g., line 17:

TEXT_IO.PUT(“Enter your speed in mph: ”);

This is the method we will use in this module. Another alternative is to add a
use clause to the code (see the unnumbered line below line 5 in Figure 3 that
is commented out). If this line is in the code, then line 17 can be written as:

51 Introduction to Ada

©2016 Course Technology, a part of Cengage Learning.

Ada is probably the most systematically developed pro-
gramming language ever. In the mid-1970s, the United
States Department of Defense (DoD) set about trying to
solve the problems created by using hundreds of different
programming languages for defense system components.
Integration was difficult, and reliability was low. Building
on the work begun by the Army, Navy, and Air Force, a
working group laid out the first informal requirements for a
common programming language. This set of requirements
was known as Strawman. More complete and stringent
requirements followed, known successively as Woodenman
(1975) and Tinman (1976). The working group evaluated
twenty-three existing programming languages against the
Tinman requirements. As none was found satisfactory, it
was decided to develop a new programming language, and
in 1977 the working group issued requests for proposals to
be evaluated against the latest specifications,

known as Ironman. Four designs were evaluated in 1978,
and two of these were selected to compete against the
final set of specifications, named Steelman. The winning
language was submitted by Cii-Honeywell Bull, led by the
Frenchman Dr. Jean Ichbiah. For his role in developing this
new language, he was later awarded membership in the
Legion of Honor by the President of France.

The name Ada was chosen, of course, in honor of Lady
Ada Augusta Byron Lovelace, who worked with Charles
Babbage in the 1800s to help “program” his Analytic
Engine (see Chapter 1). The Military Standard reference
manual for Ada was approved in 1980 on Ada Lovelace’s
birthday, December 10.

Between 1987 and 1997, the DoD required the use of
Ada for projects with significant new code. Although this
standard is no longer in place, Ada is still used to develop
highly reliable software.

History of Ada

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 5

PUT(“Enter your speed in mph: ”);

without the qualification prefix TEXT_IO.
The eventual effect of the with clause is that the linker includes object

code from this package. In addition to TEXT_IO, Ada has many other code
packages, such as mathematical and graphics packages, and therefore many
other with clauses are possible. With clauses are optional, but it would be a
trivial program indeed that did not need input data or produce output results,
so virtually every Ada program has at least the with clause shown in our
example.

Names in Ada are not case sensitive and can be written in uppercase,
lowercase, or mixed case. The code in this module is written in the style of
the Reference Manual for the Ada Programming Language.1 This style can be
recognized by noting that many items are typed in all uppercase letters,
and that the underscore character is often used as a “word separator,”
e.g., TEXT_IO.

Now back to the line-by-line code analysis. Line 7 begins the body part
of the Ada program. The package body begins with a PROCEDURE statement,
which includes a name—in this case, TravelPlanner. The body code
concludes with an END statement, line 34, which includes the same name,
TravelPlanner.

Lines 8 through 13 constitute the declarative portion of the package.
Lines 8 and 9 are a special form of declaration. Ada is a strongly-typed
language, which means the compiler will not allow you to mix up integers
(numbers with no decimal point), floating-point numbers (numbers with
decimal points), and strings (such as “abc”) in the same statement. A ram-
ification of that requirement is that each type of data must have its own
separate mechanism for input and output. Lines 8 and 9 deal with that
problem for the TravelPlanner program. There are several “kinds” (think
“sizes”) of integers and several “kinds” of floating-point numbers. Line 8
makes a special package named INT_IO for input/output of integers as
used in the TravelPlanner program, and line 9 makes a package named
FLO_IO for floating-point numbers as used in the TravelPlanner program.
Because there is only one kind of string, a special package is not needed.
Any I/O operation involving integers must be prefixed by INT_IO, any
operation involving floats must be prefixed with FLO_IO, and any I/O
operation involving strings must be prefixed by TEXT_IO, as in lines 17–20
and 24–33.

Lines 11 through 13 are statements that declare the names and data types
for the quantities to be used in the program. Descriptive names—speed, dis-
tance, and time—are used for these quantities to help document their purpose
in the program, and comments provide further clarification. Note that the
data type designation (INTEGER, FLOAT) appears after the name, as opposed to
C-like languages, where the data type designation comes first.

After all this setup, the executable portion of the package body lies
between the BEGIN at line 15 and the END statement at line 34. For want of a

6 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

1Reference Manual for the Ada Programming Language (ANSI/MIL-STD-1815A-1983),
Springer-Verlag, New York, 1983, ISBN:0-387-90887-0. Ada is a registered trademark of the
U.S. Government.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 6

better term, we’ll call this portion the “main program code,” even though the
entire Ada program is “code.” Line 17 outputs a string (TEXT_IO.PUT(. . .)) as
a prompt to the user to enter a value. Line 18 (INT_IO.GET(. . .)) gathers the
integer input for speed that is typed in by the user on the keyboard. Lines 19
and 20 do a similar job for the floating-point value of distance.

Line 22 is a replacement statement used to compute the value for time.
Two important features of this statement are that the replacement operator is
:� (as opposed to � in many languages), and that strong typing requires that
the integer value of speed be converted to type FLOAT before the division
operation will be allowed to take place.

Lines 24 through 33 create the output display on the console screen.
Lines 28 and 33 create the line breaks in the output.

Line 34 signals the end of the source code for the package.
Each line of code within the structural markers (PROCEDURE, BEGIN, END)

must end with a semicolon. The semicolon requirement is a bit of a pain in the
neck, but the Ada compiler generates one or more error messages if you omit
the semicolon, so after the first few hundred times this happens, you tend to
remember to put it in.

Ada, along with every other programming language, has very specific
rules of syntax—the correct form for each component of the language. Having
a semicolon at the end of every executable statement is an Ada syntax rule.
Any violation of the syntax rules generates an error message from the com-
piler because the compiler does not recognize or know how to translate the
offending code. In the case of a missing semicolon, the compiler cannot tell
where the instruction ends. The syntax rules for a programming language are
often defined by a formal grammar, much as correct English syntax is defined
by rules of grammar.

Ada is a free-format language, which means that it does not matter
where things are placed on a line. For example, we could have written

time :=
distance /

FLOAT(speed);

although this is clearly harder to read. The free-format characteristic explains
why a semicolon is needed to mark the end of an instruction, which might be
spread over several lines.

1.2 Creating and Running an Ada Program

Creating and running an Ada program is basically a three-step process. The
first step is to type the program into a text editor. When you are finished, you
save the file, giving it a name with the extension .adb. The extension “adb”
(shorthand for Ada body) is used since this is a package body. Specification
files would have an extension .ads. So the file for Figure 1 could be named

TravelPlanner.adb

As the second step, the program in the .adb file must be prepared for execu-
tion. This step has three substeps: compilation (turn the source file into an

71 Introduction to Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 7

2 Virtual Data Storage

One of the improvements we seek in a high-level language is freedom from
having to manage data movement within memory. Assembly language does
not require us to give the actual memory address of the storage location to be
used for each item, as in machine language. However, we still have to move
values, one by one, back and forth between memory and the arithmetic logic
unit (ALU) as simple modifications are made, such as setting the value of A to
the sum of the values of B and C. We want the computer to let us use data
values by name in any appropriate computation without thinking about where
they are stored or what is currently in some register in the ALU. In fact, we do
not even want to know that there is such a thing as an ALU, where data are
moved to be operated on; instead, we want the virtual machine to manage the
details when we request that a computation be performed. A high-level
language allows this, and it also allows the names for data items to be more
meaningful than in assembly language.

Names in a programming language are called identifiers. Each language has
its own specific rules for what a legal identifier can look like. In Ada an identifier

8 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

Ada Compiler and Graphics Library
You can download the free open-source GNAT Ada95 command-line compiler that is
part of the GNU Compiler Collection from

www.gnu.org/software/gnat/gnat.html

There are versions that run on Linux, Mac OS X, and Windows systems.
The graphics library used in this chapter is AdaGraph, available for free download
from

http://www.filewatcher.com/m/adagraph.zip.103876-0.html

object file), binding (associate address values with symbolic names), and link-
ing (connect the object code just created with any other object code needed),
resulting in an executable file. In our example, the result is a file called

TravelPlanner.exe

The third step operates on the .exe file and loads and executes the program.
Depending on your system, you may have to type operating system commands
for the last two steps.

Another approach is to do all of your work in an Integrated Development
Environment, or IDE. The IDE lets the programmer perform a number of tasks
within the shell of a single application program, rather than having to use a sep-
arate program for each task. A modern programming IDE provides a text editor, a
file manager, a compiler, a linker and loader, and tools for debugging, all within
this one piece of software. The IDE usually has a GUI interface with menu choices
for the different tasks. This can significantly speed up program development.

This Ada exercise is just a beginning. In the rest of this module, we’ll
examine the features of the language that will enable you to write your own
Ada programs to carry out more sophisticated tasks.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 8

can be any combination of letters, digits, and the underscore symbol (_), as long
as it starts with a letter. An additional restriction is that an identifier cannot be
one of the few reserved words, such as BEGIN, INTEGER, FLOAT, and so forth,
that have a special meaning in Ada and that you would not be likely to use any-
way. The three integers B, C, and A in our assembly language program can there-
fore have more descriptive names, such as subTotal, tax, and finalTotal. The use
of descriptive identifiers is one of the greatest aids to human understanding of a
program. Identifiers can be almost arbitrarily long, so be sure to use a meaning-
ful identifier such as finalTotal instead of something like A; the improved read-
ability is well worth the extra typing time. Ada is not a case-sensitive language,
which means that uppercase letters are treated the same as lowercase letters.
Thus, FinalTotal, Finaltotal, and finalTotal are all the same identifier.

92 Virtual Data Storage

©2016 Course Technology, a part of Cengage Learning.

CAPITALIZATION OF IDENTIFIERS
There are two standard capitalization patterns for identifiers, particularly “multi-
ple word” identifiers:

camel case: First word begins with a lowercase letter, additional words
begin with uppercase letters (finalTotal)

Pascal case: All words begin with an uppercase letter (FinalTotal)

As mentioned earlier, the Ada code in this chapter will follow the formatting of the
Ada LRM (Language Reference Manual) when referring to packages that are part of
the Ada system. For other identifiers, the code in this chapter uses the following
convention (examples included):

Simple variables – camel case: speed, time, finalTotal

Function names – camel case: myFunction, getInput

Class names – Pascal case: MyClass

Object names – camel case: myObject

The underscore character is not used in programmer-defined identifiers; it is used
in “standard” Ada such as TEXT_IO.PUT(. . .). Occasionally, we’ll use
single capital letters for identifiers in quick code fragments.

Data that a program uses can come in two varieties. Some quantities are fixed
throughout the duration of the program, and their values are known ahead of
time. These quantities are called constants. An example of a constant is the
integer value 2. Another is an approximation to p, say 3.1416. The integer 2 is
a constant that we don’t have to name by an identifier, nor do we have to build
the value 2 in memory manually by the equivalent of a .DATA pseudo-op. We can
just use the symbol “2” in any program statement. When “2” is first encoun-
tered in a program statement, the binary representation of the integer 2 is auto-
matically generated and stored in a memory location. Likewise, we can use
“3.1416” for the real number value 3.1416, but if we are really using this
number as an approximation to p, it is more informative to use the identifier pi.

Some quantities used in a program have values that change as the
program executes, or values that are not known ahead of time but must be
obtained from the computer user (or from a data file previously prepared

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 9

by the user) as the program runs. These quantities are called variables.
For example, in a program doing computations with circles (where we
might use the constant pi), we might need to obtain from the user or a
data file the radius of the circle. This variable can be given the identifier
radius.

Identifiers for variables serve the same purpose in program statements as
pronouns do in ordinary English statements. The English statement “He will
be home today” has specific meaning only when we plug in the value for
which “He” stands. Similarly, a program statement such as

time := distance/FLOAT(speed);

becomes an actual computation only when numeric values have been stored in
the memory locations referenced by the distance and speed identifiers.

We know that all data are represented internally in binary form. In
Chapter 4 we noted that any one sequence of binary digits can be interpreted
as a whole number, a negative number, a real number (one containing a
decimal point, such as –17.5 or 28.342), or as a letter of the alphabet. Ada
requires the following information about each variable in the program:

• What identifier we want to use for it (its name)

• What data type it represents (e.g., an integer or a letter of the
alphabet)

The data type determines how many bytes will be needed to store the
variable—that is, how many memory cells are to be considered as one
memory location referenced by one identifier—and also how the string of
bits in that memory location is to be interpreted. Ada provides several
“primitive” data types that represent a single unit of information, as shown
in Figure 4.

The way to give the necessary information within an Ada program is to
declare each variable. A variable declaration consists of a list of one or more
identifiers of the same data type followed by that data type. Our sample pro-
gram used three declaration statements:

speed : INTEGER; -- rate of travel

distance : FLOAT; -- miles to travel

time : FLOAT; -- time needed for this

-- travel

but these could have been combined into two:

speed : INTEGER; -- rate of travel

distance, time : FLOAT; -- miles to travel and

-- time needed for this

-- travel

10 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

INTEGER An integer quantity

FLOAT A real number

CHARACTER A character (a single keyboard character, such as ‘a’)

Some of the Ada Primitive
Data Types

FIGURE 4

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 10

Where do the variable declarations go? All variable declarations are collected
together in the declarative portion of the package, above the executable main
program code. This guarantees that a variable will be declared before it can be
used. It also gives the reader of the code quick information about the data
that the program will be using.

What about the constant pi? We want to assign the fixed value 3.1416 to
the pi identifier. Constant declarations are just like variable declarations, with
the addition of the keyword constant and the assignment of the fixed value
to the constant identifier.

pi : constant := 3.1416;

Note that the type of the variable pi is inferred from the way the number
3.1416 is written. This is a FLOAT number, so pi inherits type FLOAT.

Some programmers use all uppercase letters to denote constant identi-
fiers, but the compiler identifies a constant quantity only by the presence of
constant in the declaration. Once a quantity has been declared as a constant,
any attempt later in the program to change its value generates an error
message from the compiler.

In addition to variables of a primitive data type that hold only one unit of
information, it is possible to declare a whole collection of related variables at
one time. This allows storage to be set aside as needed to contain each of the
values in this collection. For example, suppose we want to record the number
of “hits” on a Web site for each month of the year. The value for each month
is a single integer. We want a collection of 12 such integers, ordered in a
particular way. An array groups together a collection of memory locations, all
storing data of the same type. The following statement declares an array:

hits : array(0..11) of INTEGER;

The 12 individual array elements are numbered from hits(0) to hits(11).
(Notice that this Ada array counts from 0 up to 11.)

Thus, we use hits(0) to refer to the first entry in hits, which represents
the number of visits to the Web site during the first month of the year, Janu-
ary. Continuing this numbering scheme, hits(2) refers to the number of visits
during March, and hits(11) to the number of visits during December. In this
way we use one declaration to set up 12 separate (but related) integer storage
locations. Figure 5 illustrates this array.

Here is an example of the power of a high-level language. In assembly
language we can name only individual memory locations—that is, individual
items of data—but in Ada we can also assign a name to an entire collection of
related data items. An array thus enables us to talk about an entire table of
values, or the individual elements making up that table. If we are writing Ada
programs to implement the data cleanup algorithms of Chapter 3, we can use
an array of integers to store the 10 data items.

Ada gives the programmer a bit more flexibility in declaring arrays than
most other programming languages. The hits array could also be declared as
follows in Ada:

hits : array(1..12) of INTEGER;

This version counts from 1 up to 12. The “..” sequence specifies the beginning
and ending values for the range of the array indexing.

112 Virtual Data Storage

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 11

3 Statement Types

Now that we can reserve memory for data items by simply naming what we
want to store and describing its data type, we will examine additional kinds of
programming instructions (statements) that Ada provides. These statements
enable us to manipulate the data items and do something useful with them.
The instructions in Ada, or indeed in any high-level language, are designed as
components for algorithmic problem solving, rather than as one-to-one trans-
lations of the underlying machine language instruction set of the computer.
Thus they allow the programmer to work at a higher level of abstraction. In
this section we examine three types of high-level programming language
statements. They are consistent with the pseudocode operations we described
in Chapter 2 (see Figure 2.9).

Input/output statements make up one type of statement. An input
statement collects a value from the user for a variable within the program.
In our TravelPlanner program, we need input statements to get the specific
values of the speed and distance that are to be used in the computation. An
output statement writes a message or the value of a program variable to the
user’s screen. Once the TravelPlanner program computes the time required to
travel the given distance at the given speed, the output statement displays
that value on the screen, along with other information about what that
value means.

12 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

hits(0) hits(2) hits(11)

hits
A 12-Element Array hits

FIGURE 5

1. Which of the following are legitimate Ada identifiers?

martinBradley C3P_OH Amy3 3Right constant

2. Write a declaration statement for an Ada program that uses one
integer quantity called number.

3. Write an Ada statement that declares a type FLOAT constant called
taxRate that has the value 5.5.

4. Using the hits array of Figure 5, how do you reference the number
of hits on the Web page for August?

PRACTICE PROBLEMS

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 12

Another type of statement is the assignment statement, which assigns
a value to a program variable. This is similar to what an input statement
does, except that the value is not collected directly from the user, but is
computed by the program. In pseudocode we called this a “computation
operation.”

Control statements, the third type of statement, affect the order in
which instructions are executed. A program executes one instruction or pro-
gram statement at a time. Without directions to the contrary, instructions are
executed sequentially, from first to last in the program. (In Chapter 2 we
called this a straight-line algorithm.) Imagine beside each program statement
a light bulb that lights up while that statement is being executed; you would
see a ripple of lights from the top to the bottom of the program. Sometimes,
however, we want to interrupt this sequential progression and jump around in
the program (which is accomplished by the instructions JUMP, JUMPGT, and
so on, in assembly language). The progression of lights, which may no longer
be sequential, illustrates the flow of control in the program—that is, the
path through the program that is traced by following the currently executing
statement. Control statements direct this flow of control.

3.1 Input/Output Statements

Remember that the job of an input statement is to collect from the user
specific values for variables in the program. In pseudocode, to get the value
for speed in the TravelPlanner program, we would say something like

Get value for speed

Ada can do this task using a function named GET. The input statement is

INT_IO.GET(speed);

Because all variables must be declared before they can be used, the declaration
statement that says speed is to be a variable (of data type INTEGER) precedes
this input statement.

Let’s say that we have written the entire TravelPlanner program and it is
now executing. When the preceding input statement is encountered, the
program stops and waits for the user to enter a value for speed (by typing it at
the keyboard, followed by pressing the ENTER key). For example, the user
could type

58 �ENTER�

The GET function captures the string consisting of a 5 followed by an 8; this is
just a two-character string, similar to the string “ab” consisting of an a
followed by a b. In other words, the two-length string of characters “58” is not
the same as the integer numeric value of 58, and we could not do any numer-
ical computations with it. It is necessary to convert the string of numeric
characters into an integer. That conversion from string to integer has been
planned for in advance and is carried out by the instantiation (line 8 in the
TravelPlanner program) of a special form for GET called INT_IO.GET that reads

133 Statement Types

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 13

strings and returns integers. If the user enters a decimal number as the input
value for speed, e.g., 48.7, INT_IO.GET will gather the characters 4 and 8 and
stop at the decimal point, since it could not be part of an integer. It will
return 48 for the value of speed. However the .7 is still there as part of the
input stream and will be consumed by the next GET statement, which is happy
with .7 (or 0.7) as a FLOAT, assigns that value to distance, and produces an
unexpected result for time.

In the usual case, the value of distance is input using the statement

FLO_IO.GET(distance);

Note that here the conversion of the string of characters gathered by GET is
to type FLOAT. It would be acceptable to enter an integer value, say 657,
instead of 657.0. The conversion process knows that it can make a FLOAT
value from a string of numeric characters that does not contain a decimal
point.

After the two input statements, the value of the time can be computed
and stored in the memory location referenced by time. A pseudocode operation
for producing output would be something like

Print the value of time

This could be done by the following statement:

FLO_IO.PUT(time);

Output in Ada is handled as the opposite of input. A value stored in memory—
in this case the value of the variable time—is converted into a string and copied
to the console (the screen). But we don’t want the program to simply print
a number with no explanation; we want some words to make the output
meaningful.

The form of the output statement for text is

TEXT_IO.PUT(string);

Literal strings (enclosed in double quotes) are printed out exactly as is. For
example,

TEXT_IO.PUT(“Here’s your answer.”);

prints

Here’s your answer.

The following Ada statement will start a new line in the output display, which
is useful for formatting the output to make it easier to read.

TEXT_IO.NEW_LINE;

A single Ada statement can be spread over multiple lines, but a line break
cannot occur in the middle of a literal string. The solution is to make two
smaller substrings and join them together (concatenate them), as in

14 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 14

TEXT_IO.PUT(“Oh for a sturdy ship to sail, ”

& “and a star to steer her by.”);

which has the same effect as if the literal string had all been written on a
single line. The & is the Ada concatenation operator.

Running the TravelPlanner program with our original data of 58 mph and
657.5 miles resulted in a printed value of time of

1.13362E+01

This is fairly ridiculous output—it does not make sense to display the result
in scientific notation. The appearance of numerical output can be controlled,
rather than leaving it up to the system to decide, by including additional para-
meters in the output statement. If only two digits to the right of the decimal
point are to be displayed for time, the output statement would take the
following form.

FLO_IO.PUT(time, 5, 2, 0);

The parameters for this version of the PUT function are

FLO_IO.PUT(value, digits before the decimal point, digits after the dec-
imal point, number digits in exponent)

If these parameter values are used in the PUTs for time and distance, the
resulting output is:

Enter your speed in mph: 58
Enter your distance in miles: 657.5
At 58 mph, it will take

11.34 hours to travel 657.50 miles.

Note that the value of time is rounded to 11.34 during the output process. A
single parameter in the INT_IO.PUT function will control the number of
columns for the integer output.

Let’s back up a bit and note that we also need to print some text infor-
mation before the input statement, to alert the user that the program expects
some input. A statement such as

TEXT_IO.PUT(“Enter your speed in mph: ”);

acts as a user prompt. Without a prompt, the user may be unaware that the
program is waiting for some input; instead, it may simply seem to the user
that the program is “hung up.”

Assembling all of these bits and pieces, we can see that

TEXT_IO.PUT(“Enter your speed in mph: ”);

INT_IO.GET(speed);

TEXT_IO.PUT(“Enter your distance in miles: ”);

FLO_IO.GET(distance);

153 Statement Types

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 15

is a series of prompt, input, prompt, input statements to get the data, and
then

TEXT_IO.PUT(“At ”);

INT_IO.PUT(speed);

TEXT_IO.PUT(“ mph, ”);

TEXT_IO.PUT(“it will take ”);

TEXT_IO.NEW_LINE;

FLO_IO.PUT(time, 5, 2, 0);

TEXT_IO.PUT(“ hours to travel ”);

FLO_IO.PUT(distance, 5, 2, 0);

TEXT_IO.PUT(“ miles.”);

TEXT_IO.NEW_LINE;

writes out the computed value of the time along with the associated input
values in an informative message. In the middle, we need a program statement
to compute the value of time. We can do this with a single assignment
statement; the assignment statement is explained in the next section.

16 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

1. Write two statements that prompt the user to enter an integer value
and store that value in a (previously declared) variable called
quantity.

2. A program has computed a value for the integer variable height.
Write output statements that print this variable using six columns
and cause successive output to appear on the next line.

3. What appears on the screen after execution of the following
statements?

TEXT_IO.PUT(“This is”);

TEXT_IO.PUT(“goodbye”);

TEXT_IO.NEW_LINE;

PRACTICE PROBLEMS

3.2 The Assignment Statement

As we said earlier, an assignment statement assigns a value to a program vari-
able. This is accomplished by evaluating some expression and then writing the
resulting value in the memory location referenced by the program variable.
The general pseudocode operation

Set the value of “variable” to “arithmetic expression”

has as its Ada equivalent

variable := expression;

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 16

The expression on the right is evaluated, and the result is then written into the
memory location named on the left. For example, suppose that A, B, and C have
all been declared as integer variables in some program. The assignment statements

B := 2;

C := 5;

result in B taking on the value 2 and C taking on the value 5. After execution of

A := B + C;

A has the value that is the sum of the current values of B and C. Assignment is a
destructive operation, so whatever A’s previous value was, it is gone. Note that this
one assignment statement says to add the values of B and C and assign the result
to A. This one high-level language statement is equivalent to three assembly lan-
guage statements needed to do this same task (LOAD B, ADD C, STORE A). A high-
level language program thus packs more power per line than an assembly language
program. To state it another way, whereas a single assembly language instruction
is equivalent to a single machine language instruction, a single Ada instruction is
usually equivalent to many assembly language instructions or machine language
instructions, and it allows us to think at a higher level of problem solving.

In the assignment statement, the expression on the right is evaluated
first. Only then is the value of the variable on the left changed. This means
that an assignment statement like

A := A + 1;

makes sense. If A has the value 7 before this statement is executed, then the
expression evaluates to

7 + 1, or 8

and 8 then becomes the new value of A.
All four basic arithmetic operations can be done in Ada, where they are

denoted by

�Addition
- Subtraction
* Multiplication
/ Division

For the most part, this is standard mathematical notation, rather than the some-
what verbose assembly language op code mnemonics such as SUBTRACT. The rea-
son a special symbol is used for multiplication is that � would be confused with
x, an identifier, � (a multiplication dot) doesn’t appear on the keyboard, and jux-
taposition—writing AB for A*B—would look like a single identifier named AB.

We do have to pay some attention to data types. Ada is so strongly typed
that you cannot, for example, mix types in an arithmetic expression. Of the
three expressions below

7.0/2 7/2.0 7.0/2.0

only the last one is acceptable. The first two will result in compiler errors.

173 Statement Types

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 17

However, if the two values being divided are both integers, the result is an
integer value; if the division doesn’t “come out even,” the integer value is
obtained by truncating the answer to an integer quotient. Thus,

7/2

results in the value 3. Think of grade-school long division of integers:

Here the quotient is 3 and the remainder is 1. Ada also provides an operation,
with the name mod, to obtain the integer remainder. Using this operation,

7 mod 2

results in the value 1. If the values are stored in type INTEGER variables, the
same thing happens. For example,

numerator : INTEGER;

denominator : INTEGER;

numerator := 7;

denominator := 2;

TEXT_IO.PUT(“The result of ”);

INT_IO.PUT(numerator, 1);

TEXT_IO.PUT(“/”);

INT_IO.PUT(denominator, 1);

TEXT_IO.PUT(“ is ”);

INT_IO.PUT(numerator / denominator, 1);

produces the output

The result of 7/2 is 3

Automatic type conversion, or type casting as it is called in most languages,
does not take place in Ada. To solve this problem, Ada provides functions that
convert types explicitly. For example

time := distance / FLOAT(speed);

Here, the FLOAT function takes in an INTEGER quantity (speed) and returns
the equivalent FLOAT value so that the division operation involves two FLOAT
quantities and avoids a compiler error. There is a corresponding function
named INTEGER that takes in a FLOAT value, rounds it to an integer, and

3
2q7

6
1

18 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 18

returns the resulting value. For example, with a declared as an INTEGER, after
execution of the statement

a := INTEGER(71.6);

the value in a would be 72.
Data types also play a role in assignment statements. Suppose the expres-

sion in an assignment statement evaluates to a real number (a floating-point
number) and is then assigned to an identifier that has been declared as an
integer, or vice versa. In either case Ada will produce a compiler error, and
again, to avoid this, an explicit type conversion must be done by using the
INTEGER or FLOAT function.

You should only assign an expression that has a character value to a
variable that has been declared to be type CHARACTER. Suppose that letter is
a variable of type CHARACTER. Then

letter := ‘m’;

is a legitimate assignment statement, giving letter the value of the character
‘m’. Note that single quotation marks are used here, as opposed to the double
quotation marks that enclose a literal string. The assignment

letter := ‘4’;

is also acceptable; the single quotes around the 4 mean that it is being treated
as just another character on the keyboard, not as the integer 4.

193 Statement Types

©2016 Course Technology, a part of Cengage Learning.

1. newNumber and next are integer variables in an Ada program. Write
a statement to assign the value of newNumber to next.

2. The goal is to compute the average when the following statements
are executed (total and number are type INTEGER, and average is
type FLOAT). Would this code compile in Ada? If not, how should it
be written? What is the expected output value?

total := 277;

number := 5;

average := total/number;

PRACTICE PROBLEMS

3.3 Control Statements

We mentioned earlier that sequential flow of control is the default; that is, a
program executes instructions sequentially from first to last. The flowchart in
Figure 6 illustrates this, where S1, S2, . . ., Sk are program instructions (i.e.,
program statements).

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 19

As stated in Chapter 2, no matter how complicated the task to be done,
only three types of control mechanisms are needed:

1. Sequential: Instructions are executed in order.

2. Conditional: Which instruction executes next depends on some
condition.

3. Looping: A group of instructions may be executed many times.

Sequential flow of control, the default, is what occurs if the program does not
contain any instances of the other two control structures. In the TravelPlan-
ner program, for example, instructions are executed sequentially, beginning
with the input statements, next the computation, and finally the output
statement.

In Chapter 2 we introduced pseudocode notation for conditional opera-
tions and looping. In Chapter 6 we learned how to write somewhat laborious
assembly language code to implement conditional operations and looping.
Now we’ll see how Ada provides instructions that directly carry out these con-
trol structure mechanisms—more evidence of the power of high-level lan-
guage instructions. We can think in a pseudocode algorithm design mode, as
we did in Chapter 2, and then translate that pseudocode directly into Ada
code.

Conditional flow of control begins with the evaluation of a Boolean
condition, also called a Boolean expression, which can be either true or
false. We discussed these “true/false conditions” in Chapter 2, and we also

20 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

S1

S2

Sk

Sequential Flow of Control

FIGURE 6

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 20

encountered Boolean expressions in Chapter 4, where they were used
to design circuits. A Boolean condition often involves comparing the values
of two expressions and determining whether they are equal, whether the
first is greater than the second, and so on. Again assuming that A, B, and C
are integer variables in a program, the following are legitimate Boolean
conditions:

A = 0 (Does A currently have the value 0?)

B < (A + C) (Is the current value of B less than the sum of the
current values of A and C?)

A /= B (Does A currently have a different value than B?)

If the current values of A, B, and C are 2, 5, and 7, respectively, then the first
condition is false (A does not have the value zero), the second condition is
true (5 is less than 2 plus 7), and the third condition is true (A and B do not
have equal values).

Comparisons need not be numeric. They can also be done between vari-
ables of type CHARACTER, where the “ordering” is the usual alphabetic order-
ing. If initial is a value of type CHARACTER with a current value of ‘D’, then

initial = ‘F’

is false because initial does not have the value ‘F’, and

initial < ‘P’

is true because ‘D’ precedes ‘P’ in the alphabet (or, more precisely, because
the binary code for ‘D’ is numerically less than the binary code for ‘P’). Note
that the comparisons are case sensitive, so ‘F’ is not equal to ‘f’, but ‘F’ is less
than ‘f’.

Figure 7 shows the comparison operations available in Ada. Boolean
conditions can be built up using the Boolean operators AND, OR, and NOT.
Truth tables for these operators were given in Chapter 4 (Figures 4.12–4.14).
The only new thing is the symbols that Ada uses for these operators, shown in
Figure 8.

A conditional statement relies on the value of a Boolean condition (true
or false) to decide which programming statement to execute next. If the con-
dition is true, one statement is executed next, but if the condition is false, a
different statement is executed next. Control is therefore no longer in a

213 Statement Types

©2016 Course Technology, a part of Cengage Learning.

Ada Comparison Operators

FIGURE 7
COMPARISON SYMBOL EXAMPLE EXAMPLE RESULT

the same value as = 2 = 5 false
less than < 2 < 5 true
less than or equal to <= 5 <= 5 true
greater than > 2 > 5 false
greater than or equal to >= 2 >= 5 false
not the same value as /= 2 /= 5 true

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 21

straight-line (sequential) flow, but hops to one place or to another. Figure 9
illustrates this situation. If the condition is true, the statement S1 is executed
(and statement S2 is not); if the condition is false, the statement S2 is
executed (and statement S1 is not). In either case, the flow of control then
continues on to statement S3. We saw this same scenario when we discussed
pseudocode conditional statements in Chapter 2 (Figure 2.4).

The Ada instruction that carries out conditional flow of control is called
an if-else statement. It has the following form (note that the words if, then,
else, and end if are lowercase).

if Boolean condition
then

S1;
else

S2;
end if;

On the next page is a simple if-else statement, where we assume that A, B, and
C are integer variables.

22 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

Ada Boolean Operators

FIGURE 8
OPERATOR SYMBOL EXAMPLE EXAMPLE RESULT

AND and (2 < 5) and (2 > 7) false
OR or (2 < 5) or (2 > 7) true
NOT not not (2 = 5) true

S1 S2

S3

Condition
T F

Conditional Flow of Control
(if-else)

FIGURE 9

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 22

if B < (A + C)

then

A := 2*A;

else

A := 3*A;

end if

Note that in the Ada syntax for the if statement, the “parts” of the statement
are delimited by reserved words rather than by curly braces as in C-like
languages.

Suppose that when this statement is reached, the values of A, B, and C are
2, 5, and 7, respectively. As we noted before, the condition B � (A � C) is
then true, so the statement

A := 2*A;

is executed, and the value of A is changed to 4. However, suppose that when
this statement is reached, the values of A, B, and C are 2, 10, and 7, respec-
tively. Then the condition B � (A � C) is false, the statement

A := 3*A;

is executed, and the value of A is changed to 6.
A variation on the if-else statement is to allow an “empty else” case. Here we

want to do something if the condition is true, but if the condition is false, we want
to do nothing. Figure 10 illustrates the empty else case. If the condition is true,

233 Statement Types

©2016 Course Technology, a part of Cengage Learning.

S1

S3

Condition
T F

If-else with Empty Else

FIGURE 10

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 23

statement S1 is executed, and after that the flow of control continues on to state-
ment S3, but if the condition is false, nothing happens except to move the flow of
control directly on to statement S3.

This if variation of the if-else statement can be accomplished by omitting
the word else. This form of the instruction therefore looks like

if Boolean condition
then

S1
end if;

We could write

if B < (A + C)

then

A := 2*A;

end if;

This has the effect of doubling the value of A if the condition is true and of
doing nothing if the condition is false.

It is possible to include many statements in either the “then” or the
“else” part of the if statement. For example, in

if B < (A + C)

then

TEXT_IO.PUT(“This is the first statement.”);

TEXT_IO.PUT(“This is the second statement.”);

TEXT_IO.PUT(“This is the third statement.”);

end if;

all three output statements are executed if the condition is true. The implica-
tion is that in Figure 9, S1 or S2 can be a collection of statements, called
a compound statement. This makes the if-else statement potentially much
more powerful and similar to the pseudocode conditional statement in
Figure 2.9.

Let’s expand on our TravelPlanner program and give the user of the pro-
gram a choice of computing the time either as a decimal number (3.75 hours)
or as hours and minutes (3 hours, 45 minutes). This situation is ideal for a
conditional statement. Depending on what the user wants to do, the program
does one of two tasks. For either task, the program still needs information
about the speed and distance. The program must also collect information to
indicate which task the user wishes to perform. We need an additional variable
in the program to store this information. Let’s use a variable called choice of
type CHARACTER to collect the user’s choice of which task to perform. We also
need two new integer variables to store the values of hours and minutes.

Figure 11 shows the new program, with the three additional declared
variables. The condition evaluated at the beginning of the if-else statement
tests whether choice has the value ‘D’. If so, then the condition is true, and the
first group of statements is executed—that is, the time is output in decimal
format as we have been doing all along. If choice does not have the value ‘D’,
then the condition is false. In this event, the second group of statements is
executed. Note that because of the way the condition is written, if choice does

24 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 24

253 Statement Types

©2016 Course Technology, a part of Cengage Learning.

-- Computes and outputs travel time

-- for a given speed and distance

-- Written by J. Q. Programmer, 6/15/16

WITH TEXT_IO;

PROCEDURE TravelPlanner IS

PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

PACKAGE FLO_IO IS NEW TEXT_IO.FLOAT_IO(FLOAT);

speed : INTEGER; -- rate of travel

distance : FLOAT; -- miles to travel

time : FLOAT; -- time needed for this travel

hours : INTEGER; -- time for travel in hours

minutes : INTEGER; -- leftover time in minutes

choice : CHARACTER; -- choice of output as

-- decimal hours

-- or hours and minutes

BEGIN

TEXT_IO.PUT(“Enter your speed in mph: ”);

INT_IO.GET(speed);

TEXT_IO.PUT(“Enter your distance in miles: ”);

FLO_IO.GET(distance);

TEXT_IO.PUT(“Enter your choice of format” &

“ for time, ”);

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“decimal hours (D) ” &

“or hours and minutes (M): ”);

TEXT_IO.GET(choice);

if choice = ‘D’

then

time := distance / FLOAT(speed);

TEXT_IO.PUT(“At ”);

INT_IO.PUT(speed, 3);

TEXT_IO.PUT(“ mph, ”);

TEXT_IO.PUT(“it will take ”);

TEXT_IO.NEW_LINE;

FLO_IO.PUT(time, 5, 2, 0);

TEXT_IO.PUT(“ hours to travel ”);

FLO_IO.PUT(distance, 5, 2, 0);

TEXT_IO.PUT(“ miles.”);

TEXT_IO.NEW_LINE;

else

time := distance / FLOAT(speed);

hours := INTEGER(time + 0.5) - 1;

minutes := INTEGER((time - FLOAT(hours)) * 60.0);

TEXT_IO.PUT(“At ”);

INT_IO.PUT(speed, 3);

TEXT_IO.PUT(“ mph, ”);

TEXT_IO.PUT(“it will take ”);

TEXT_IO.NEW_LINE;

The TravelPlanner Program with
a Conditional Statement

FIGURE 11

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 25

not have the value ‘D’, it is assumed that the user wants to compute the time
in hours and minutes, even though choice may have any other non-D value
(including ‘d’) that the user may have typed in response to the prompt.

To compute hours and minutes (the else clause of the if-else statement),
time is computed in the usual way, which results in a decimal value. The
whole number (integer) part of that decimal is the number of hours needed for
the trip. We can get this number by a somewhat complex statement that is
shown below.

hours := INTEGER(time + 0.5) - 1;

The issue is that the Ada conversion function INTEGER rounds the decimal
value. To get the correct integer component, it is necessary to force the
function to round up and then subtract one to obtain the proper value (an
example follows shortly).

To find the fractional part of the hour that we dropped, we subtract hours
from time. We multiply this by 60 to turn it into some number of minutes, but
this is still a decimal number. We do another explicit type cast to round this
to an integer value for minutes:

minutes := INTEGER((time - FLOAT(hours)) * 60.0);

For example, if the user enters data of 50 mph and 475 miles and requests
output in hours and minutes, the following table shows the computed values.

26 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

INT_IO.PUT(hours, 3);

TEXT_IO.PUT(“ hours and ”);

INT_IO.PUT(minutes, 3);

TEXT_IO.PUT(“ minutes to travel ”);

FLO_IO.PUT(distance, 5, 2, 0);

TEXT_IO.PUT(“ miles.”);

TEXT_IO.NEW_LINE;

end if;

END TravelPlanner;

The TravelPlanner Program with
a Conditional Statement
(continued)

FIGURE 11

Quantity Value

speed 50

distance 475

time � distance/speed 9.5

hours � INTEGER

(time + 0.5) – 1 9

time – FLOAT(hours) 0.5

(time – FLOAT(hours))*60 30.0

minutes � INTEGER((time –
FLOAT(hours)) * 60.0) 30

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 26

Here is the actual program output for this case:

Enter your speed in mph : 50
Enter your distance in miles : 475
Enter your choice of format for time,

decimal hours (D) or hours and minutes (M): M
At 50 mph, it will take

9 hours and 30 minutes to travel 475.00 miles.

The two groups of statements in an if-else statement are identified by the
enclosing keywords, but in Figure 11 we also indented them to make them
easier to pick out when looking at the program. Like comments, indentation is
ignored by the computer but is valuable in helping people to more readily
understand a program.

Now let’s look at the third variation on flow of control, namely looping
(iteration). We want to execute the same group of statements (called the loop
body) repeatedly, depending on the result of a Boolean condition. As long as
(while) the condition remains true, the loop body is executed. The condition
is tested before each execution of the loop body. When the condition becomes
false, the loop body is not executed again, which is usually expressed by say-
ing that the algorithm exits the loop. To ensure that the algorithm ultimately
exits the loop, the condition must be such that its truth value can be affected
by what happens when the loop body is executed. Figure 12 illustrates the

273 Statement Types

©2016 Course Technology, a part of Cengage Learning.

S2

F

T

S1

Condition

While Loop

FIGURE 12

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 27

while loop. The loop body is statement S1 (which can be a compound
statement), and S1 is executed while the condition is true. Once the condition
is false, the flow of control moves on to statement S2. If the condition is false
when it is first evaluated, then the body of the loop is never executed at all.
We saw this same scenario when we discussed pseudocode looping statements
in Chapter 2 (Figure 2.6).

Ada uses a variation of its loop statement to achieve the while iteration
scheme. The statement to implement this type of looping has the form shown
below.

while Boolean condition
loop

S1
end loop;

Again, S1 can be a compound statement. For example, suppose we want to
write a program to add up a number of nonnegative integers that the user
supplies and write out the total. We need a variable to hold the total; we’ll call
this variable sum, and make its data type INTEGER. To handle the numbers to
be added, we could declare a bunch of integer variables such as n1, n2, n3, . . .
and do a series of input-and-add statements of the form

INT_IO.GET(n1);

sum := sum + n1;

INT_IO.GET(n2);

sum := sum + n2;

and so on. There are two problems with this approach. The first is that we may
not know ahead of time how many numbers the user wants to add. If we
declare variables n1, n2, . . ., n25, and the user wants to add 26 numbers, the
program won’t do the job. The second problem is that this approach requires
too much effort. Suppose that we know the user wants to add 2000 numbers.
We could declare 2000 variables (n1, . . ., n2000), and we could write the
above input-and-add statements 2000 times, but it wouldn’t be fun. Nor is it
necessary—we are doing a very repetitive task here, and we should be able to
use a loop mechanism to simplify the job. (We faced a similar situation in the
first pass at a sequential search algorithm, Figure 2.11; our solution there was
also to use iteration.)

Even if we use a loop mechanism, we are still adding a succession of val-
ues to sum. Unless we are sure that the value of sum is zero to begin with,
we cannot be sure that the answer isn’t nonsense. Remember that the iden-
tifier sum is simply an indirect way to designate a memory location in the
computer. That memory location contains a pattern of bits, perhaps left over
from whatever was stored there when some previous program was run. We
cannot assume that just because this program hasn’t used sum, its value is
zero. (In contrast, the assembly language statement SUM: .DATA 0 reserves a
memory location, assigns it the identifier SUM, and fills it with the value
zero.) If we want the beginning value of sum to be zero, we must use an
assignment statement. Using assignment statements to set the values of
certain variables before they are used by the program is called initialization
of variables.

28 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 28

Now on to the loop mechanism. First, let’s note that once a number has
been read in and added to sum, the program doesn’t need to know the value of
the number any longer. We can declare just one integer variable called number
and use it repeatedly to hold the first numerical value, then the second, and
so on. The general idea is

sum := 0; -- initialize sum

while (there are more numbers to add)
loop

INT_IO.GET(number);

sum := sum + number;

end loop;

TEXT_IO.PUT(“The total is ”);

INT_IO.PUT(sum, 3);

TEXT_IO.NEW_LINE;

Now we have to figure out what the condition “there are more numbers to add”
really means. Because we are adding nonnegative integers, we could ask the
user to enter one extra integer that is not part of the legitimate data but is
instead a signal that there are no more data. Such a value is called a sentinel
value. For this problem, any negative number would be a good sentinel value.
Because the numbers to be added are all nonnegative, the appearance of a neg-
ative number signals the end of the legitimate data. We don’t want to process
the sentinel value (because it is not a legitimate data item); we only want to
use it to terminate the looping process. This might suggest the following code:

sum := 0; -- initialize sum

while number >= 0 -- but there is a problem here,

-- see following discussion

loop

INT_IO.GET(number);

sum := sum + number;

end loop;

TEXT_IO.PUT(“The total is ”);

INT_IO.PUT(sum, 3);

TEXT_IO.NEW_LINE;

Here’s the problem. How can we test whether number is greater than or equal
to 0 if we haven’t read the value of number yet? We need to do a preliminary
input for the first value of number outside of the loop and then test that value
in the loop condition. If it is nonnegative, we want to add it to sum and then
read the next value and test it. Whenever the value of number is negative
(including the first value), we want to do nothing with it—that is, we want to
avoid executing the loop body. The following statements do this; we’ve also
added instructions to the user.

sum := 0; -- initialize sum

TEXT_IO.PUT(“Please enter numbers to add; ”);

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“terminate with a negative number.”);

TEXT_IO.NEW_LINE;

INT_IO.GET(number);

293 Statement Types

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 29

while number >= 0

loop

sum := sum + number;

INT_IO.GET(number);

end loop;

TEXT_IO.PUT(“The total is ”);

INT_IO.PUT(sum, 3);

TEXT_IO.NEW_LINE;

The value of number gets changed within the loop body by reading in a new
value. The new value is tested, and if it is nonnegative, the loop body
executes again, adding the data value to sum and reading in a new value for
number. The loop terminates when a negative value is read in. Remember the
requirement that something within the loop body must be able to affect the
truth value of the condition. In this case, it is reading in a new value for
number that has the potential to change the value of the condition from true
to false. Without this requirement, the condition, once true, would remain
true forever, and the loop body would be endlessly executed. This results in
what is called an infinite loop. A program that contains an infinite loop will
execute forever (or until the programmer gets tired of waiting and interrupts
the program, or until the program exceeds some preset time limit).

Here is a sample of the program output.

Please enter numbers to add;

terminate with a negative number.

5
6
10
-1
The total is 21

The problem we’ve solved here, adding nonnegative integers until a negative
sentinel value occurs, is the same one solved using assembly language in
Chapter 6. The preceding Ada code is almost identical to the pseudocode
version of the algorithm shown in Figure 6.7. Thanks to the power of the
language, the Ada code embodies the algorithm directly, at a high level of
thinking, whereas in assembly language this same algorithm had to be
translated into the lengthy and awkward code of Figure 6.8.

To process data for a number of different trips in the TravelPlanner
program, we could use a while loop. During each pass through the loop, the
program computes the time for a given speed and distance. The body of the
loop is therefore exactly like our previous code. All we are adding here is the
framework that provides looping. To terminate the loop, we could use a sen-
tinel value, as we did for the program above. A negative value for speed, for
example, is not a valid value and could serve as a sentinel value. Instead of
that, let’s allow the user to control loop termination by having the program
ask the user whether he or she wishes to continue. We’ll need a variable to
hold the user’s response to this question. Of course, the user could answer “N”
at the first query, the loop body would never be executed at all, and the
program would terminate. Figure 13 shows the complete program.

30 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 30

313 Statement Types

©2016 Course Technology, a part of Cengage Learning.

-- Computes and outputs travel time

-- for a given speed and distance

-- Written by J. Q. Programmer, 6/15/16

WITH TEXT_IO;

PROCEDURE TravelPlanner IS

PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

PACKAGE FLO_IO IS NEW TEXT_IO.FLOAT_IO(FLOAT);

speed : INTEGER; -- rate of travel

distance : FLOAT; -- miles to travel

time : FLOAT; -- time needed for this travel

hours : INTEGER; -- time for travel in hours

minutes : INTEGER; -- leftover time in minutes

choice : CHARACTER; -- choice of output as

-- decimal hours

-- or hours and minutes

more : CHARACTER; -- user’s choice to do

-- another trip

BEGIN

TEXT_IO.PUT(“Do you want to plan a trip? ” &

“(Y or N): ”);

TEXT_IO.GET(more);

while more = ‘Y’ -- more trips to plan

loop

TEXT_IO.PUT(“Enter your speed in mph: ”);

INT_IO.GET(speed);

TEXT_IO.PUT(“Enter your distance in miles: ”);

FLO_IO.GET(distance);

TEXT_IO.PUT(“Enter your choice of format” &

“ for time, ”);

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“decimal hours (D) ” &

“or hours and minutes (M): ”);

TEXT_IO.GET(choice);

if choice = ‘D’

then

time := distance / FLOAT(speed);

TEXT_IO.PUT(“At ”);

INT_IO.PUT(speed, 3);

TEXT_IO.PUT(“ mph, ”);

TEXT_IO.PUT(“it will take ”);

TEXT_IO.NEW_LINE;

FLO_IO.PUT(time, 5, 2, 0);

TEXT_IO.PUT(“ hours to travel ”);

FLO_IO.PUT(distance, 5, 2, 0);

TEXT_IO.PUT(“ miles.”);

TEXT_IO.NEW_LINE;

else

time := distance / FLOAT(speed);

The TravelPlanner Program
with Looping

FIGURE 13

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 31

32 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

hours := INTEGER(time + 0.5) - 1;

minutes := INTEGER((time - FLOAT(hours)) * 60.0);

TEXT_IO.PUT(“At ”);

INT_IO.PUT(speed, 3);

TEXT_IO.PUT(“ mph, ”);

TEXT_IO.PUT(“it will take ”);

TEXT_IO.NEW_LINE;

INT_IO.PUT(hours, 3);

TEXT_IO.PUT(“ hours and ”);

INT_IO.PUT(minutes, 3);

TEXT_IO.PUT(“ minutes to travel ”);

FLO_IO.PUT(distance, 5, 2, 0);

TEXT_IO.PUT(“ miles.”);

TEXT_IO.NEW_LINE;

end if;

TEXT_IO.PUT(“Do you want to plan another trip? ” &

“(Y or N): ”);

TEXT_IO.GET(more);

end loop;

END TravelPlanner;

The TravelPlanner Program with
Looping (continued)

FIGURE 13

Assume all variables have previously been declared.

1. What is the output from the following section of code?

number1 := 15;

number2 := 7;

if number1 >= number2

then

INT_IO.PUT(2*number1);

else

INT_IO.PUT(2*number2);

end if;

2. What is the output from the following section of code?

scores := 1;

while scores < 20

loop

scores := scores + 2;

INT_IO.PUT(scores);

end loop;

3. What is the output from the following section of code?

quotaThisMonth := 7;

quotaLastMonth := quotaThisMonth + 1;

if (quotaThisMonth > quotaLastMonth) or

(quotaLastMonth >= 8)

PRACTICE PROBLEMS

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 32

4 Another Example

Let’s briefly review the types of Ada programming statements we’ve learned. We
can do input and output—reading values from the user into memory, writing
values out of memory for the user to see, being sure to use meaningful variable
identifiers to reference memory locations. We can assign values to variables
within the program. And we can direct the flow of control by using conditional
statements or looping. Although many other statement types are available in
Ada, you can do almost everything using only the modest collection of state-
ments we have described. The power lies in how these statements are combined
and nested within groups to produce ever more complex courses of action.

For example, suppose we write a program to assist SportsWorld, a com-
pany that installs circular swimming pools. In order to estimate their costs for
swimming pool covers or for fencing to surround the pool, SportsWorld needs
to know the area or circumference of a pool, given its radius. A pseudocode
version of the program is shown in Figure 14.

We should be able to translate this pseudocode fairly directly into an Ada
package body. Other things we need to add to complete the program are:

• A prologue comment to explain what the program does (optional but
always recommended for program documentation)

• A with statement to gain access to TEXT_IO and instantiations of IO
packages for the data types to be input or output

334 Another Example

©2016 Course Technology, a part of Cengage Learning.

then

TEXT_IO.PUT(“Yes”);

quotaLastMonth := quotaLastMonth + 1;

else

TEXT_IO.PUT(“No”);

quotaThisMonth := quotaThisMonth + 1;

end if;

4. How many times is the PUT statement executed in the following
section of code?

left := 10;

right := 20;

while left <= right

loop

INT_IO.PUT(left);

left := left + 2;

end loop;

5. Write an Ada statement that outputs “Equal” if the integer values
of night and day are the same, but otherwise does nothing.

PRACTICE PROBLEMS

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 33

• A declaration for the constant value pi (3.1416)

• Variable declarations

Figure 15 gives the complete program. Figure 16 shows what actually appears
on the screen when this program is executed with some sample data.

One point of interest in this code is that Ada has an exponentiation oper-
ator, **. So the area of the circular swimming pool is computed with the fol-
lowing line of code.

area := pi * radius ** 2;

The exponentiation operator is at the highest precedence level, so the **
operation is carried out (on the variable radius) before the * (multiplication)
operation.

34 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

Get value for user’s choice about continuing
While user wants to continue, do the following steps

Get value for pool radius
Get value for choice of task
If task choice is circumference

Compute pool circumference
Print output

Else (task choice is area)
Compute pool area
Print output

Get value for user’s choice about continuing
Stop

A Pseudocode Version of the
SportsWorld Program

FIGURE 14

-- This program helps SportsWorld estimate costs

-- for pool covers and pool fencing by computing

-- the area or circumference of a circle

-- with a given radius.

-- Any number of circles can be processed.

-- Written by M. Phelps, 10/05/16

WITH TEXT_IO;

PROCEDURE SportsWorld IS

PACKAGE FLO_IO IS NEW TEXT_IO.FLOAT_IO(FLOAT);

pi : constant := 3.1416; -- value of pi

radius : FLOAT; -- radius of a pool - given

circumference : FLOAT; -- circumference of a pool -

-- computed

area : FLOAT; -- area of a pool -

-- computed

taskToDo : CHARACTER; -- holds user choice to

-- compute circumference

-- or area

The SportsWorld Program

FIGURE 15

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 34

354 Another Example

©2016 Course Technology, a part of Cengage Learning.

more : CHARACTER; -- controls loop for

-- processing more pools

BEGIN

TEXT_IO.PUT(“Do you want to process a pool? (Y or N): ”);

TEXT_IO.GET(more);

while more = ‘Y’ -- more circles to process

loop

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Enter the value of the radius of a ” &

“pool: ”);

FLO_IO.GET(radius);

-- See what user wants to compute

TEXT_IO.PUT(“Enter your choice of task.”);

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“C to compute circumference, ” &

“A to compute area: ”);

TEXT_IO.GET(taskToDo);

if taskToDo = ‘C’ -- compute circumference

then

circumference := 2.0 * pi * radius;

TEXT_IO.PUT(“The circumference for a pool ” &

“of radius ”);

FLO_IO.PUT(radius, 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(circumference, 3, 2, 0);

TEXT_IO.NEW_LINE;

else -- compute area

area := pi * radius ** 2;

TEXT_IO.PUT(“The area for a pool ” &

“of radius ”);

FLO_IO.PUT(radius, 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(area, 3, 2, 0);

TEXT_IO.NEW_LINE;

end if;

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Do you want to process more pools? ” &

“(Y or N): ”);

TEXT_IO.GET(more);

end loop; -- end of while loop

-- finish up

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Program will now terminate.”);

END SportsWorld;

The SportsWorld Program
(continued)

FIGURE 15

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 35

5 Managing Complexity

The programs we have written have been relatively simple. More complex
problems require more complex programs to solve them. Although it is fairly
easy to understand what is happening in the 40 or so lines of the SportsWorld
program, imagine trying to understand a program that is 50,000 lines long.
Imagine trying to write such a program! It is not possible to understand—all
at once—everything that goes on in a 50,000-line program.

36 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

Do you want to process a pool? (Y or N): Y

Enter the value of the radius of a pool: 2.7
Enter your choice of task.

C to compute circumference, A to compute area: C
The circumference for a pool of radius 2.70 is 16.96

Do you want to process more pools? (Y or N): Y

Enter the value of the radius of a pool: 2.7
Enter your choice of task.

C to compute circumference, A to compute area: A
The area for a pool of radius 2.70 is 22.90

Do you want to process more pools? (Y or N): Y

Enter the value of the radius of a pool: 14.53
Enter your choice of task.

C to compute circumference, A to compute area: C
The circumference for a pool of radius 14.53 is 91.29

Do you want to process more pools? (Y or N): N

Program will now terminate.

A Sample Session Using the
Program of Figure 15

FIGURE 16

1. Write a complete Ada program to read in an integer number and
write out the square of that number.

2. Write a complete Ada program that asks for the price of an item and
the quantity purchased, and writes out the total cost.

3. Write a complete Ada program that asks for a number. If the
number is less than 5, it is written out, but if it is greater than or
equal to 5, twice that number is written out.

4. Write a complete Ada program that asks the user for a positive
integer n and then writes out all the numbers from 1 up to and
including n.

PRACTICE PROBLEMS

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 36

5.1 Divide and Conquer

Writing large programs is an exercise in managing complexity. The solution is
a problem-solving approach called divide and conquer. Suppose a program is
to be written to do a certain task; let’s call it task T. Suppose further that we
can divide this task into smaller tasks, say A, B, C, and D, such that, if we can
do those four tasks in the right order, we can do task T. Then our high-level
understanding of the problem need only be concerned with what A, B, C, and
D do and how they must work together to accomplish T. We do not, at this
stage, need to understand how A, B, C, and D can be done. Figure 17(a), an
example of a structure chart or structure diagram, illustrates this situation.
Task T is composed in some way of subtasks A, B, C, and D. Later we can turn
our attention to, say, subtask A and see if it too can be decomposed into
smaller subtasks, as in Figure 17(b). In this way, we continue to break the
task down into smaller and smaller pieces, finally arriving at subtasks that are
simple enough that it is easy to write the code to carry them out. By dividing
the problem into small pieces, we can conquer the complexity that is
overwhelming if we look at the problem as a whole.

Divide and conquer is a problem-solving approach and not just a com-
puter programming technique. Outlining a term paper into major and minor
topics is a divide-and-conquer approach to writing the paper. Doing a Form
1040 Individual Tax Return for the Internal Revenue Service can involve the
subtasks of completing Schedules A, B, C, D, and so on and then reassembling
the results. Designing a house can be broken down into subtasks of designing
floor plans, wiring, plumbing, and the like. Large companies organize their
management responsibilities using a divide-and-conquer approach; what we
have called structure charts become, in the business world, organization
charts.

How is the divide-and-conquer problem-solving approach reflected in the
resulting computer program? If we think about the problem in terms of
subtasks, then the program should show that same structure; that is, part of
the code should do subtask A, part should do subtask B, and so on. We divide
the code into modules or subprograms, each of which does some part of the
overall task. Then we empower these modules to work together to solve the
original problem.

375 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

Task T Task T

BA C D A C D

A2A1 A3

B

(b) More detailed decomposition(a) Basic decomposition

Structure Charts

FIGURE 17

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 37

5.2 Using Functions/Procedures

In Ada, modules of code are called either functions or procedures. These are
the optional functions/procedures listed before the BEGIN keyword in the Ada
program outline of Figure 2. One feature of the Ada language that differs from
C-like languages (C, C++, C#, Java) is that functions and procedures are
nested within one another. In Figure 2, the code for any optional
functions/procedures is written inside the main procedure. And any of these
functions or procedures could themselves contain code for other functions or
procedures.

Each function/procedure in a program should do one and only one
subtask. The distinction between a function and a procedure is the following:
A function performs a subtask of computing one and only one value (similar
to a mathematical function) and returning that single value for use by the
rest of the program. A procedure carries out more general subtasks that may
include returning multiple results (through a different mechanism than a
function uses) for use by the rest of the program. For the moment, we’ll
continue to use the non-Ada term “module” so we don’t have to worry just yet
whether a module is an Ada function or an Ada procedure.

The executable part of a package body lies between the BEGIN and END
statements; we are calling this the “main program code.” When modules are
used, the main program code can consist primarily of invoking these modules
of code in the correct order. Let’s review the main program code of the
SportsWorld program (Figure 15) with an eye to further subdividing the task.
In the main program code, there is a loop that does some operations as long
as the user wants. What gets done? Input is obtained from the user about the
radius of the circle and the choice of task to be done (compute circumference
or compute area). Then the circumference or the area gets computed and
written out. We’ve identified three subtasks, as shown in the structure chart
of Figure 18.

We can visualize the main program code at a pseudocode level, as shown in
Figure 19. This divide-and-conquer approach to solving the problem can (and
should) be planned first in pseudocode, without regard to the details of the
programming language to be used. If the three subtasks (input, circumference,
area) can all be done, then arranging them within the structure of Figure 19
solves the problem. We can write a module for each of the subtasks. Although
we now know what form the main program code will take, we have pushed the

38 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

SportsWorld

Get input Do
circumference

Do
area

Structure Chart for the
SportsWorld Task

FIGURE 18

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 38

details of how to do each of the subtasks off into the other modules. Execution
of the main program code starts after the BEGIN statement. Every time the flow
of control reaches the equivalent of a “do subtask” instruction, it transfers exe-
cution to the appropriate module code. When execution of the module code is
complete, flow of control returns to the main program code and picks up where
it left off.

Before we look at the details of how to write a module, we need to
examine the mechanism that allows the modules to work with each other and
with the main program code. This mechanism consists of passing information
about various quantities in the program back and forth between the modules
and the main program code. Because each module is doing only one subtask of
the entire task, it does not need to know the values of all variables in the
program. It only needs to know the values of the variables with which its
particular subtask is concerned. Allowing a module access to only pertinent
variables prevents that module from inadvertently changing a value it has no
business changing.

When the main program code wants a module to be executed, it gives the
name of the module (which is an ordinary Ada identifier) and also a list of the
identifiers for variables pertinent to that module. This is called an argument
list. In our SportsWorld program, let’s name the three modules getInput,
doCircumference, and doArea (names that are descriptive of the subtasks these
modules carry out). The getInput module collects the values for the variables
radius and taskToDo. The main program code invokes the getInput module
with the statement

getInput(radius, taskToDo);

which takes the place of the “Do the input subtask” line in Figure 19. When this
statement is reached, control passes to the getInput module. After execution
of this module, control returns to the main program code, and the variables
radius and taskToDo have the values obtained for them within getInput.

The doCircumference module computes and writes out the value of the
circumference, and, in order to do that, it needs to know the radius. Therefore,
the variable radius is a legitimate argument for this module. The main
program code contains the statement

doCircumference(radius);

in place of the “do the circumference subtask” line in Figure 19. When this
statement is reached, the variable radius conveys the value of the radius to the

395 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

Get value for user’s choice about continuing
While the user wants to continue

Do the input subtask
If (Task = ‘C’) then

do the circumference subtask
else

do the area subtask
Get value for user’s choice about continuing

A High-Level Modular View of
the SportsWorld Program

FIGURE 19

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 39

doCircumference module, which computes and writes out the circumference. The
variable circumference, then, is also a variable of interest to the doCircumference
module, but it is of interest to this module alone, in the sense that doCircumfer-
ence does the computation and writes out the result. No other use is made of
the circumference in the entire program, so no other module, nor the main
program code, has anything to do with circumference. So now the variable
circumference will be declared (and can be used) only within the doCircumfer-
ence module; it will be local to that module. Any module can have its own local
constants and local variables, declared within and known only to that module.

The doCircumference module also needs to know the value of the constant
pi. We could declare pi as a constant local to doCircumference, but doArea
needs the same constant, so we will place the declaration for pi above the
code for any module. This will make pi a global constant whose value is
known everywhere. The value of a constant cannot be changed, so there is no
reason to prevent any function/procedure from having access to its value.

The doArea module computes and writes out the area and needs to know
the radius, so the line “do the area subtask” in Figure 19 is replaced by

doArea(radius);

Within doArea, area is a local variable.

Now we can write the main program code of the modularized version of the
SportsWorld program, shown in Figure 20. The main program code is a direct
translation of Figure 19. If, in starting from scratch to write this program, we
had taken a divide-and-conquer approach, broken the original problem down
into three subtasks, and come up with the outline of Figure 19, it would have
been easy to get from there to Figure 20. The only additional task would have
been determining the variables needed.

40 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

BEGIN

TEXT_IO.PUT(“Do you want to process a pool? (Y or N): ”);

TEXT_IO.GET(more);

while more = ‘Y’ -- more circles to process

loop

getInput(radius, taskToDo);

if taskToDo = ‘C’ -- compute circumference

then

doCircumference(radius);

else -- compute area

doArea(radius);

end if;

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Do you want to process more pools? (Y or N): ”);

TEXT_IO.GET(more);

end loop; -- end of while loop

-- finish up

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Program will now terminate.”);

END SportsWorld;

The Main Program Code in a
Modularized Version of the
SportsWorld Program

FIGURE 20

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 40

At a glance, the main program code in Figure 20 does not look a great deal
different from our former main program code. However, it is conceptually
quite different; the subtasks of getting the input values, computing and
writing out the circumference, and computing and writing out the area have
been relegated to modules. The details (such as the formulas for computing
circumference and area) are now hidden and have been replaced by module
invocations. If these subtasks had required many lines of code, our new main
program code would indeed be shorter—and easier to understand—than
before.

5.3 Writing Functions/Procedures

Now we know how the main program code can invoke a module. (In fact, using
the same process, any function/procedure can invoke another function/
procedure. A function can even invoke itself.) It is time to see how to write
the code for these functions/procedures. The general outline for an Ada
function or an Ada procedure is shown in Figure 21.

The header (shown as the first two lines in Figure 21) consists of four parts:

• The keyword FUNCTION or PROCEDURE

• The function or procedure identifier

• A parameter list

• A return indicator (for a function)

The return indicator for a function indicates the data type of the one and
only value computed and returned by the function. None of the three modules
in the SportsWorld program does something as simple as computing and
returning a single value: The getInput module has to prompt for and collect
several input values and make these results available to the main program
code. The doCircumference and doArea modules both compute single values,
but they don’t return them to the main program code; they write them as
output. All three modules are Ada procedures.

The function or procedure identifier can be any legitimate Ada identifier.
The parameters in the parameter list correspond to the arguments in the
statement that invokes this function or procedure; that is, the first parameter
in the list matches the first argument given in the statement that invokes the
function or procedure, the second parameter matches the second argument,
and so on. It is through this correspondence between parameters and
arguments that information (data) flows from the main program code to other
modules, and vice versa. The data type of each parameter must be given as

415 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

FUNCTION function name (parameter list) PROCEDURE procedure name
return type is (parameter list) is

local declarations [optional] local declarations [optional]
BEGIN BEGIN

function body procedure body
return . . . END name

END name

The Outline for an Ada
Function/Procedure

FIGURE 21

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 41

part of the parameter list, and it must match the data type of the correspond-
ing argument. For example, because the getInput procedure is invoked with
the two arguments radius and taskToDo, the parameter list for the getInput
header has two parameters, the first of type FLOAT and the second of type
CHARACTER. Parameters may have, but do not have to have, the same identi-
fiers as the corresponding arguments; arguments and parameters correspond
by virtue of their respective positions in the argument list and the parameter
list, regardless of the identifiers used. For the getInput procedure, we choose
the parameter identifiers radius and taskToDo, matching the argument identi-
fiers. No semicolon is used at the end of a procedure/function header; the
delimiter is the word “IS”.

One additional aspect of the parameter list in the header concerns the use
the module will make of each parameter. Consider the statement that invokes
the module; an argument in the invoking statement carries a data value to the
corresponding parameter in the header. If the value is one that the module
must know to do its job but should not change, then the argument is passed
by value. The module receives a copy of the data value for its use but can
make no changes to that value. If, however, the value passed to the module is
one that the module should change, and the main program code should know
the new value, then the argument is passed by reference. The module
receives access to the memory location where the value is stored, and any
changes it makes to the value are seen by the main program code after control
returns there.

By default, arguments in Ada are passed by value (the default can also be
denoted by the keyword in next to the corresponding parameter names),
which protects them from change by the module. An in parameter cannot
appear on the left side of an assignment statement. Explicit action must be
taken by the programmer to pass an argument by reference; specifically, the
keywords out or in out must appear in front of the corresponding parameter
data type in the module parameter list. An out argument does not have a
value before the module invocation. Its corresponding out parameter is used
solely to obtain a value within the module, and, without any further use being
made of it within the module, the new value is sent back to the argument in
the invoking statement. An in out parameter receives a value that can be both
used and modified within the module, and the modified value is then sent
back to the invoking statement.

How do we decide whether to pass an argument by value or by reference?
If the main program code needs to obtain a new value back from a module
when execution of that module terminates, then the argument must be passed
by reference (by inserting the out or in out into the parameter list). Otherwise,
the argument should be passed by value, the default arrangement (either use
in or don’t indicate anything, since in is the default).

In the getInput procedure, both radius and taskToDo have no assigned val-
ues when passed into the procedure. The task of the getInput procedure is to
obtain values for these variables from the user that the main program code
will get back when getInput terminates, so both of these arguments are passed
by reference (using out). The header for the getInput procedure is shown
below, along with the invoking statement from the main program code. Note
that the parameters radius and taskToDo are in the right order, have been
given the correct data types, and are marked for passing by reference. Also
remember that, although the arguments are named radius and taskToDo
because those are the variable identifiers used in the main program code, the

42 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 42

parameters could have different identifiers, and it is the parameter identifiers
that are used within the body of the procedure.

-– header

PROCEDURE getInput(radius : out FLOAT;

taskToDo : out

CHARACTER) IS

-- invocation

getInput(radius, taskToDo);

The body of the getInput procedure comes from the corresponding part of
Figure 15. If we hadn’t already written this code, we could have done a
pseudocode plan first. The complete procedure appears in Figure 22, where a
comment has been added to document the purpose of the procedure.

The doCircumference procedure needs to know the value of radius but does
not change that value. Therefore, radius is passed by value. Why is the dis-
tinction between arguments passed by value and those passed by reference
important? If modules are to effect any changes at all, then clearly reference
parameters are necessary, but why not just make everything a reference para-
meter? Suppose that in this example radius is made a reference parameter. If
an instruction within doCircumference were to inadvertently change the value
of radius, then that new value would be returned to the main program code,
and any subsequent calculations using this value (there are none in this
example) would be in error. Making radius a value parameter prevents this.
How could one possibly write a program statement that changes the value of
a variable inadvertently? In something as short and simple as our example,
this probably would not happen, but in a more complicated program, it might.
Distinguishing between passing by value and passing by reference is just a fur-
ther step in controlling a module’s access to data values, to limit the damage
the module might do. The code for the doCircumference procedure appears in
Figure 23.

The doArea procedure is very similar. Let’s reassemble everything and give
the complete modularized version of the program. In Figure 24, only the main
program code needs to know the value of more. No other procedure needs

435 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

PROCEDURE getInput(radius : out FLOAT; taskToDo : out

CHARACTER) IS

-- gets radius and choice of task from the user

BEGIN

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Enter the value of the radius of a ” &

“pool: ”);

FLO_IO.GET(radius);

-- See what user wants to compute

TEXT_IO.PUT(“Enter your choice of task.”);

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“C to compute circumference, ” &

“A to compute area: ”);

TEXT_IO.GET(taskToDo);

END getInput;

The getInput Procedure

FIGURE 22

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 43

access to this value, so this variable is never passed as an argument. In Ada,
the code for optional procedures (or functions) is nested within other proce-
dures or functions. In Figure 24, the code for each of the three procedures
getInput, doCircumference, and doArea is nested within the declarative portion
of the main procedure. The main procedure header

PROCEDURE SportsWorld IS

also follows the form for a procedure header. In other words, the main proce-
dure truly is an Ada procedure. It has an empty parameter list because it is the
starting point for the program, and there’s no other place that could pass
argument values to it.

44 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

PROCEDURE doCircumference(radius : in FLOAT) IS

-- computes and writes out the circumference of

-- a circle with given radius

circumference : FLOAT; -- circumference of a pool -

-- computed

BEGIN

circumference := 2.0 * pi * radius;

TEXT_IO.PUT(“The circumference for a pool ” &

“of radius ”);

FLO_IO.PUT(radius, 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(circumference, 3, 2, 0);

TEXT_IO.NEW_LINE;

END doCircumference;

The doCircumference Procedure

FIGURE 23

-- This program helps SportsWorld estimate costs

-- for pool covers and pool fencing by computing

-- the area or circumference of a circle

-- with a given radius.

-- Any number of circles can be processed.

-- Written by M. Phelps, 10/05/16

WITH TEXT_IO;

PROCEDURE SportsWorld IS

PACKAGE FLO_IO IS NEW TEXT_IO.FLOAT_IO(FLOAT);

pi : constant := 3.1416; -- value of pi

PROCEDURE getInput(radius : out FLOAT; taskToDo : out

CHARACTER) IS

-- gets radius and choice of task from the user

BEGIN

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Enter the value of the radius of a ” &

“pool: ”);

The Complete Modularized
SportsWorld Program

FIGURE 24

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 44

455 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

FLO_IO.GET(radius);

-- See what user wants to compute

TEXT_IO.PUT(“Enter your choice of task.”);

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“C to compute circumference, ” &

“A to compute area: ”);

TEXT_IO.GET(taskToDo);

END getInput;

PROCEDURE doCircumference(radius : in FLOAT) IS

-- computes and writes out the circumference of

-- a circle with given radius

circumference : FLOAT; -- circumference of a pool -

-- computed

BEGIN

circumference := 2.0 * pi * radius;

TEXT_IO.PUT(“The circumference for a pool ” &

“of radius ”);

FLO_IO.PUT(radius, 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(circumference, 3, 2, 0);

TEXT_IO.NEW_LINE;

END doCircumference;

PROCEDURE doArea(radius : in FLOAT) IS

-- computes and writes out the area of

-- a circle with given radius

area : FLOAT; -- area of a pool -

-- computed

BEGIN

area := pi * radius ** 2;

TEXT_IO.PUT(“The area for a pool ” &

“of radius ”);

FLO_IO.PUT(radius, 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(area, 3, 2, 0);

TEXT_IO.NEW_LINE;

END doArea;

radius : FLOAT; -- radius of a pool - given

taskToDo : CHARACTER; -- holds user choice to

-- compute circumference

-- or area

more : CHARACTER; -- controls loop for

-- processing more pools

BEGIN

TEXT_IO.PUT(“Do you want to process a pool? (Y or N): ”);

TEXT_IO.GET(more);

The Complete Modularized
SportsWorld Program
(continued)

FIGURE 24

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 45

Because it seems to have been a lot of effort to arrive at this complete,
modularized version of our SportsWorld program (which, after all, does the same
thing as the program in Figure 15), let’s review why this effort is worthwhile.

The modularized version of the program is compartmentalized in two
ways. First, it is compartmentalized with respect to task. The major task is
accomplished by a series of subtasks, and the work for each subtask takes
place within a separate module. This leaves the main program code free of
details and consisting primarily of invoking the appropriate procedures at the
appropriate points. As an analogy, think of the president of a company calling
on various assistants to carry out tasks as needed. The president does not
need to know how a task is done, only the name of the person responsible for
carrying it out. Second, the program is compartmentalized with respect to
data, in the sense that the data values known to the various modules are
controlled by parameter lists and by the use of value instead of reference para-
meters where appropriate. In our analogy, the president gives each assistant
the information he or she needs to do the assigned task, and expects relevant
information to be returned—but not all assistants know all information.

This compartmentalization is useful in many ways. It is useful when we
plan the solution to a problem, because it allows us to use a divide-and-
conquer approach. We can think about the problem in terms of subtasks. This
makes it easier for us to understand how to achieve a solution to a large and
complex problem. It is also useful when we code the solution to a problem,
because it allows us to concentrate on writing one section of the code at a
time. We can write a module and then fit it into the program, so that the pro-
gram gradually expands rather than having to be written all at once. Develop-
ing a large software project is a team effort, and different parts of the team
can be writing different modules at the same time. It is useful when we test
the program, because we can test one new module at a time as the program
grows, and any errors are localized to the module being added. (The main pro-
gram code can be tested early by writing appropriate headers but empty
bodies for the remaining modules.) Compartmentalization is useful when we
modify the program, because changes tend to be within certain subtasks and

46 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

while more = ‘Y’ -- more circles to process

loop

getInput(radius, taskToDo);

if taskToDo = ‘C’ -- compute circumference

then

doCircumference(radius);

else -- compute area

doArea(radius);

end if;

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Do you want to process more pools?” &

“ (Y or N): ”);

TEXT_IO.GET(more);

end loop; -- end of while loop

-- finish up

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Program will now terminate.”);

END SportsWorld;

The Complete Modularized
SportsWorld Program
(continued)

FIGURE 24

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 46

hence within certain modules in the code. And finally it is useful for anyone
(including the programmer) who wants to read the resulting program. The
overall idea of how the program works, without the details, can be gleaned
from reading the main program code; if and when the details become impor-
tant, the appropriate code for the other modules can be consulted. In other
words, modularizing a program is useful for its

• Planning

• Coding

• Testing

• Modifying

• Reading

A special type of Ada module can be written to compute a single value as its
subtask. In Ada this is called a function. For example, the doCircumference
procedure does everything connected with the circumference, both calculating
the value and writing it out. We can write a doCircumference function that only
computes the value of the circumference and then returns that value to the
main program code, which writes it out. Instead of the word PROCEDURE, the
keyword FUNCTION is used in the header. Also the keyword RETURN is added,
along with the data type of the value to be returned. In addition, a function
must contain a return statement, which consists of the keyword return
followed by an expression for the value to be returned. (This explains why we
have always written the main module as a procedure; it is never invoked
anywhere else in the program and does not return a value.) A function may
need data values passed into it to compute the value it returns, but it should
not do anything besides this one computation—in particular, it should not
change the data values it receives—so all arguments to the function should be
passed by value.

The code for this new doCircumference function would be simply

FUNCTION doCircumference(radius : in FLOAT) RETURN

FLOAT IS

-- computes the circumference of a circle with

-- given radius

BEGIN

return 2.0 * pi * radius;

END doCircumference;

A function is invoked wherever the returned value is to be used, rather than
in a separate statement. For example, the statement

FLO_IO.PUT(doCircumference(radius), 3, 2, 0);

invokes the doCircumference function by giving its name and argument, and
this invocation actually becomes the value returned by the doCircumference
function, which is then written out.

Figure 25 shows a third version of the SportsWorld program using
functions for doCircumference and doArea.

An Ada package will often be split into separately compiled files. For the
program of Figure 25 there could be a package called SportsWorldFunctions

475 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 47

48 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

-- This program helps SportsWorld estimate costs

-- for pool covers and pool fencing by computing

-- the area or circumference of a circle

-- with a given radius.

-- Any number of circles can be processed.

-- Written by M. Phelps, 10/05/16

WITH TEXT_IO;

PROCEDURE SportsWorld IS

PACKAGE FLO_IO IS NEW TEXT_IO.FLOAT_IO(FLOAT);

pi : constant := 3.1416; -- value of pi

PROCEDURE getInput(radius : out FLOAT; taskToDo : out

CHARACTER) IS

-- gets radius and choice of task from the user

BEGIN

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Enter the value of the radius of a ” &

“pool: ”);

FLO_IO.GET(radius);

-- See what user wants to compute

TEXT_IO.PUT(“Enter your choice of task.”);

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“C to compute circumference, ” &

“A to compute area: ”);

TEXT_IO.GET(taskToDo);

END getInput;

FUNCTION doCircumference(radius : in FLOAT) RETURN FLOAT IS

-- computes the circumference of a circle with given radius

BEGIN

return 2.0 * pi * radius;

END doCircumference;

FUNCTION doArea(radius : in FLOAT) RETURN FLOAT IS

-- computes the area of a circle with given radius

BEGIN

return pi * radius ** 2;

END doArea;

radius : FLOAT; -- radius of a pool - given

taskToDo : CHARACTER; -- holds user choice to

-- compute circumference

-- or area

more : CHARACTER; -- controls loop for

-- processing more pools

BEGIN

TEXT_IO.PUT(“Do you want to process a pool? (Y or N): ”);

TEXT_IO.GET(more);

The SportsWorld Program
Using Functions

FIGURE 25

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 48

and a package called SportsWorld. The SportsWorldFunctions package
would be divided into the package specification and the package body.
The package specification would show the function/procedure headers,
thereby giving information about the capabilities of the package without
the details of how these capabilities are implemented. The implementations
would occur in the SportsWorldFunction package body. The SportsWorld pack-
age would consist primarily of the variable declarations for radius, taskToDo,
and more, the main program code, with function and procedure invocations
as before, plus the appropriate WITH statement to give definitions to these
functions:

WITH SportsWorldFunctions; -- gain access to the

-- functions

The separation of the functions into a separate package allows these
functions to be used in other programs in addition to SportsWorld. The only
thing other programs need to see is the package specification for the func-
tions. There is no need to make the source code for the functions (in the pack-
age body) available to the other program. Also, if a new and better
implementation for the functions is created, no change needs to be made to
the code for a program that uses these functions, because the specification
does not change.

Figure 26 summarizes several sets of terms introduced in this section.

495 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

while more = ‘Y’ -- more circles to process

loop

getInput(radius, taskToDo);

if taskToDo = ‘C’ -- compute circumference

then

TEXT_IO.PUT(“The circumference for a pool ” &

“of radius ”);

FLO_IO.PUT(radius, 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(doCircumference(radius), 3, 2, 0);

TEXT_IO.NEW_LINE;

else -- compute area

TEXT_IO.PUT(“The area for a pool ” &

“of radius ”);

FLO_IO.PUT(radius, 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(doArea(radius), 3, 2, 0);

TEXT_IO.NEW_LINE;

end if;

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Do you want to process more pools? (Y or N): ”);

TEXT_IO.GET(more);

end loop; -- end of while loop

-- finish up

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Program will now terminate.”);

END SportsWorld;

The SportsWorld Program
Using Functions
(continued)

FIGURE 25

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 49

50 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

TERM MEANING TERM MEANING

Local Declared and known only within Global Declared before any function or

variable a function or procedure. constant procedure and known

everywhere.

Argument Function or procedure receives Argument Function or procedure gains

passed a copy of the value and can passed by access to memory location

by value make no changes in the reference where the value is stored;

value. Designate changes made to the value

corresponding parameter persist after control returns to

using in. the invoking module.

Designate corresponding

parameter using out or in out.

Function Computes a single value and Procedure Performs a task, perhaps

returns it via a return returns multiple values.

statement. Invocation is Invocation is a complete Ada

within another statement. statement.

Some Ada Terminology

FIGURE 26

1. What is the output of the following Ada program?

WITH TEXT_IO;

PROCEDURE PracticeProblem IS

PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO (INTEGER);

PROCEDURE doIt(number : in out INTEGER) IS

BEGIN

number := number + 4;

END doIt;

number : INTEGER;

BEGIN

number := 7;

doIt(number);

TEXT_IO.put(“Answer: ”);

INT_IO.PUT(number);

TEXT_IO.NEW_LINE;

END PracticeProblem;

2. Ada will not allow this code to compile. Why?

WITH TEXT_IO;

PROCEDURE PracticeProblem IS

PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

PROCEDURE doIt(number : INTEGER) IS

BEGIN

number := number + 4;

END doIt;

number : INTEGER;

PRACTICE PROBLEMS

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 50

5.4 An Ada Feature: User-Defined Subtypes

We’ve already mentioned that Ada is a strongly-typed language and that if
you want to multiply, say, a FLOAT quantity by an INTEGER quantity, you have
to do an explicit type cast to one of the two operands. Ada has another fea-
ture that most languages lack—you can define your own subtypes of the Ada
standard data types, and strong typing will apply to these new types as well.
In Figure 27, a new version of the SportsWorld program, note the sections of
code in boldface type. In previous versions, radius, circumference, and area
have all been declared as type FLOAT. This version recognizes that radius and
circumference are measured in feet, while area has units of square feet. The
first two boldface lines in Figure 27 define two new types based on FLOAT. One
is called Feet, the other SquareFeet. The strong typing in Ada requires that
appropriate versions of the I/O package be used for variables declared of these
new types, so the next two boldface lines create the appropriate versions of
TEXT_IO.FLOAT_IO. These are variations of line 9 in Figure 3. Then these types
are used in the declaratives for radius and circumference (type Feet), and area
(type SquareFeet). For the most part, the remainder of the code is unchanged
except for the I/O statements, which are also shown in bold. The key to this
example is the following line.

area := pi * SquareFeet(radius ** 2);

The variable radius has type Feet. When it is squared, the units must be converted
to square feet. The “conversion” is carried out by the type casting operation per-
formed by SquareFeet(). As a “pure” number, pi has no units. It is a constant and

515 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

BEGIN

number := 7;

doIt(number);

TEXT_IO.PUT(“Answer: ”);

INT_IO.PUT(number);

TEXT_IO.NEW_LINE;

END PracticeProblem;

3. Write an Ada procedure that performs an input task for the main
program code, collecting two integer values one and two from
the user.

4. Suppose a function called tax gets a value subTotal from the main
program code, multiplies it by a constant tax rate called rate, and
returns the resulting tax value. All quantities are type FLOAT.
a. Write the function header.
b. Write the return statement in the function body.
c. Write the statement in the main program code that writes out

the tax.

PRACTICE PROBLEMS

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 51

52 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

-- This program helps SportsWorld estimate costs

-- for pool covers and pool fencing by computing

-- the area or circumference of a circle

-- with a given radius.

-- Any number of circles can be processed.

-- Written by M. Phelps, 10/05/16

WITH TEXT_IO;

PROCEDURE SportsWorld IS

TYPE Feet is NEW FLOAT; -- new data types
TYPE SquareFeet is NEW FLOAT;
PACKAGE FLO_IO_Feet IS NEW TEXT_IO.FLOAT_IO(Feet);
PACKAGE FLO_IO_SquareFeet IS NEW
TEXT_IO.FLOAT_IO(SquareFeet);

pi : constant := 3.1416; -- value of pi

radius : Feet; -- radius of a pool - given

circumference : Feet; -- circumference of a pool -

-- computed

area : SquareFeet; -- area of a pool -

-- computed

taskToDo : CHARACTER; -- holds user choice to

-- compute circumference

-- or area

more : CHARACTER; -- controls loop for

-- processing more pools

BEGIN

TEXT_IO.PUT(“Do you want to process a pool? (Y or N): ”);

TEXT_IO.GET(more);

while more = ‘Y’ -- more circles to process

loop

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Enter the value of the radius of a ” &

“pool: ”);

FLO_IO_Feet.GET(radius);
-- See what user wants to compute

TEXT_IO.PUT(“Enter your choice of task.”);

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“C to compute circumference, ” &

“A to compute area: ”);

TEXT_IO.GET(taskToDo);

if taskToDo = ‘C’ -- compute circumference

then

The SportsWorld Program with
Defined Subtypes

FIGURE 27

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 52

535 Managing Complexity

©2016 Course Technology, a part of Cengage Learning.

circumference := 2.0 * pi * radius;

TEXT_IO.PUT(“The circumference for a pool ” &

“of radius ”);

FLO_IO_Feet.PUT(radius, 3, 2, 0);
TEXT_IO.PUT(“ is ”);

FLO_IO_Feet.PUT(circumference, 3, 2, 0);
TEXT_IO.NEW_LINE;

else -- compute area

area := pi * SquareFeet(radius ** 2);
TEXT_IO.PUT(“The area for a pool ” &

“of radius ”);

FLO_IO_Feet.PUT(radius, 3, 2, 0);
TEXT_IO.PUT(“ is ”);

FLO_IO_SquareFeet.PUT(area, 3, 2, 0);
TEXT_IO.NEW_LINE;

end if;

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Do you want to process more pools? (Y or N): ”);

TEXT_IO.GET(more);

end loop; — end of while loop

— finish up

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Program will now terminate.”);

END SportsWorld;

The SportsWorld Program with
Defined Subtypes
(continued)

FIGURE 27

We have seen that Ada has some rather rigid syntax require-
ments—for example, the strict typing that does not allow
“mixed mode” arithmetic (between types INTEGER and
FLOAT, for example, or between types Feet and SquareFeet),
and the requirement that arguments to functions and pro-
cedures be regulated by their use as specified by the in,
out, and in out parameter markers. The result is that it can
take many trials to get a successful compilation of a pro-
gram, but that once it compiles, the chances for error are
reduced. This makes Ada the language of choice for safety-
critical software such as high-speed-train control, air-traffic
control, nuclear reactor monitoring, and so forth.

The European Space Agency launched the Ariane 5
rocket for the first time on June 4, 1996, only to see it
explode less than 40 seconds after takeoff. The failure was
traced to the Inertial Reference System software, which
calculates angles and velocities that are ultimately used to
execute the flight program. This software was carried over

almost intact from the earlier Ariane 4, but did not take
into account the greater horizontal velocity of the Ariane 5
flight path. Specifically, during data conversion from a 64-
bit floating point to a 16-bit signed integer, an arithmetic
overflow occurred because the floating-point number was
too large to fit into 16 bits. This ultimately led to a shut-
down of the entire system and the subsequent explosion.
For efficiency reasons, the “exception” that Ada automati-
cally raised because of this situation—which should have
been addressed by writing code called an exception han-
dler—had been disabled. The specific line of code used
was:

pragma suppress(numeric_error,

horizontal_veloc_bias);

We won’t explain this in detail, but it basically
assures the compiler that the condition raising this excep-
tion will never occur, so the compiler need not check for it.
The Ariane 5 stands as one of the more spectacular soft-
ware failures on record.

When It Absolutely,
Positively Has To Be Right

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 53

has inherited its data type from the numeric value 3.1416—presumably FLOAT,
which is compatible with the SquareFeet type, so the whole right-side expression
is now type SquareFeet. That is what is expected by the assignment operation,
since area is of type SquareFeet.

The point is that if a line of code like

area := circumference;

were to appear in this program, it would cause an error at compile time
because of the data type mismatch. Using user-defined types allows many
checks to be made at compile time so that the resulting code is as correct as
possible when execution occurs.

6 Object-Oriented Programming

6.1 What Is It?

The divide-and-conquer approach to programming is a traditional approach.
The focus is on the overall task to be done: how to break it down into sub-
tasks, and how to write algorithms for these subtasks that are carried out by
communicating modules (in the case of Ada, by functions and procedures).
The program can be thought of as a giant statement executor designed to
carry out the major task, even though the main program code may simply call
on, in turn, the various other modules that do the subtask work.

Object-oriented programming (OOP) takes a somewhat different
approach. A program is considered a simulation of some part of the world that
is the domain of interest. “Objects” populate this domain. Objects in a bank-
ing system, for example, might be savings accounts, checking accounts, and
loans. Objects in a company personnel system might be employees. Objects in
a medical office might be patients and doctors. Each object is an example
drawn from a class of similar objects. The savings account “class” in a bank
has certain properties associated with it, such as name, Social Security num-
ber, account type, and account balance. Each individual savings account at the
bank is an example of (an object of) the savings account class, and each has
specific values for these common properties; that is, each savings account has
a specific value for the name of the account holder, a specific value for the
account balance, and so forth. Each object of a class therefore has its own data
values.

So far, this is similar to the idea of a data type in Ada; in the SportsWorld
program, radius, circumference, and area are all examples (objects) from the
data type (class) FLOAT; the class has one property (a numeric quantity), and
each object has its own specific value for that property. However, in object-
oriented programming, a class also has one or more subtasks associated with
it, and all objects from that class can perform those subtasks. In carrying out
a subtask, each object can be thought of as providing some service. A savings
account, for example, can compute compound interest due on the balance.
When an object-oriented program is executed, the program generates requests
for services that go to the various objects. The objects respond by performing
the requested service—that is, carrying out the subtask. Thus, a program that

54 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 54

is using the savings account class might request a particular savings account
object to perform the service of computing interest due on its account bal-
ance. An object always knows its own data values and may use them in per-
forming the requested service.

There are three terms often associated with object-oriented programming,
as illustrated in Figure 28. The first term is encapsulation. Each class has its
own program module to perform each of its subtasks. Any user of the class
(which might be some other program) can ask an object of that class to invoke
the appropriate module and thereby perform the subtask service. The class
user needs to know what services objects of the class can provide and how to
request an object to perform any such service. The details of the module code
belong to the class itself, and this code may be modified in any manner, as
long as the way the user interacts with the class remains unchanged. (In the
savings account example, the details of the algorithm used to compute inter-
est due belong only to the class, and need not be known by any user of the
class. If the bank wants to change how it computes interest, only the code for
the interest module in the savings account class needs to be modified; any
programs that use the services of the savings account class can remain
unchanged.) Furthermore, the class properties represent data values that will
exist as part of each object of the class. A class therefore consists of two com-
ponents, its subtask modules and its properties, and both components are
encapsulated—bundled—with the class.

A second term associated with object-oriented programming is
inheritance. Once a class A of objects is defined, a class B of objects can be
defined as a “subclass” of A. Every object of class B is also an object of class A;
this is sometimes called an “is a” relationship. Objects in the B class will
“inherit” all of the properties and be able to perform all the services of objects
in A, but they may also be given some special property or ability. The benefit
is that class B does not have to be built from the ground up, but rather can
take advantage of the fact that class A already exists. In the banking example,
a senior citizens savings account would be a subclass of the savings account
class. Any senior citizens savings account object is also a savings account
object, but may have special properties or be able to provide special services.

The third term is polymorphism. Poly means “many.” Objects of different
classes may provide services that should logically have the same name because
they do roughly the same thing, but the details differ. In the banking

556 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

Inheritance

Polymorphism Encapsulation

Three Key Elements of OOP

FIGURE 28

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 55

example, both savings account objects and checking account objects should
provide a “compute interest” service, but the details of how interest is com-
puted differ in these two cases. Thus, one name, the name of the service to be
performed, has several meanings, depending on the class of the object provid-
ing the service. It may even be the case that more than one service with the
same name exists for the same class, although there must be some way to tell
which service is meant when it is invoked by an object of that class.

Let’s change analogies from the banking world to something more fanciful,
and consider a football team. Every member of the team’s backfield is an
“object” of the “backfield” class. The quarterback is the only “object” of the
“quarterback” class. Each backfield object can perform the service of carrying
the ball if he (or she) receives the ball from the quarterback; ball carrying is a
subtask of the backfield class. The quarterback who hands the ball off to a
backfield object is requesting that the backfield object perform that subtask
because it is “public knowledge” that the backfield class carries the ball and
that this service is invoked by handing off the ball to a backfield object. The
“program” to carry out this subtask is encapsulated within the backfield class,
in the sense that it may have evolved over the week’s practice and may depend
on specific knowledge of the opposing team, but at any rate, its details need
not be known to other players. Inheritance can be illustrated by the halfback
subclass within the backfield class. A halfback object can do everything a back-
field object can but may also be a pass receiver. And polymorphism can be illus-
trated by the fact that the backfield may invoke a different “program”
depending on where on the field the ball is handed off. Of course our analogy
is imperfect, because not all human “objects” from the same class behave in
precisely the same way—fullbacks sometimes receive passes and so on.

6.2 Ada and OOP

In February 1995, Ada 95, a revision of the original Ada programming lan-
guage, became the first internationally standardized object-oriented program-
ming language. The new standard, officially ISO/IEC 8652:1995, added many
new and important features to the language.2 While there is no single mecha-
nism for a class in Ada 95, Ada 95 packages can be constructed to provide the
analogous behavior. Figure 29 compares standard object-oriented terminology
and Ada 95 terminology.

56 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

Object-Oriented Terminology
and Usage: Standard and Ada

FIGURE 29
Standard Object-Oriented Terminology

and Usage

Ada 95 Terminology and Usage

Method Primitive operation: procedure or function defined

after the tagged record in the definition package

Class Tagged Record Type

Reference to object property:

objectName.property objectName.property

Message (request for service):

objectName.method(arguments) PrimitiveOperation(objectName, arguments)

2The newest international Ada standard was adopted in 2012.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 56

How do these ideas get translated into real programs? Let’s rewrite the
SportsWorld program one more time, this time using a more object-oriented
approach. What are the objects of interest within the scope of this problem?
SportsWorld deals with circular swimming pools, but they are basically just cir-
cles. In Ada the first step in this process is to create a new type, something called
a tagged record type. The object-oriented code for SportsWorld will look similar to
the previous function-based code, but the tagged record type will allow the type
to be extended to cover other object-oriented ideas, e.g., inheritance. So, let’s
create a CIRCLE type, and have the SportsWorld program create objects of
(instances of) that type. The objects are individual circles. A CIRCLE object has a
radius. A CIRCLE object, which knows the value of its own radius, should be able
to perform the services of computing its own circumference and its own area. At
this point, we have answered the two major questions about our CIRCLE type:

• What are the properties common to any object of this type? (In this
case, there is a single property—the radius.)

• What are the services that any object of the type should be able to per-
form? (In this case, it should be able to compute its circumference and
compute its area, although as we will see shortly, we will need other
services as well.)

Figure 30 shows the complete object-oriented version of SportsWorld, with its
new type CIRCLE. The type CIRCLE has the single property radius, and four

576 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

-- This program helps SportsWorld estimate costs

-- for pool covers and pool fencing by computing

-- the area or circumference of a circle

-- with a given radius.

-- Any number of circles can be processed.

-- Written by M. Phelps, 10/05/16

WITH TEXT_IO;

PROCEDURE SportsWorld IS

PACKAGE FLO_IO IS NEW TEXT_IO.FLOAT_IO(FLOAT);

pi : constant := 3.1416; — value of pi

TYPE CIRCLE IS

tagged record

radius: FLOAT;

end record;

PROCEDURE setRadius(obj: in out CIRCLE; value : in FLOAT) IS

-- sets radius equal to value

BEGIN

obj.radius := value;

END setRadius;

FUNCTION getRadius(obj: in CIRCLE) RETURN FLOAT IS

-- returns the value of radius

An Object-Oriented SportsWorld
Program

FIGURE 30

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 57

58 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

BEGIN

return obj.radius;

END getRadius;

FUNCTION doCircumference(obj: in CIRCLE) RETURN FLOAT IS

-- computes the circumference of a circle with given radius

BEGIN

return 2.0 * pi * obj.radius;

END doCircumference;

FUNCTION doArea(obj: in CIRCLE) RETURN FLOAT IS

-- computes the area of a circle with given radius

BEGIN

return pi * obj.radius ** 2;

END doArea;

PROCEDURE getInput(radius : out FLOAT; taskToDo : out

CHARACTER) IS

-- gets radius and choice of task from the user

BEGIN

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Enter the value of the radius of a ” &

“pool: ”);

FLO_IO.GET(radius);

-- See what user wants to compute

TEXT_IO.PUT(“Enter your choice of task.”);

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“C to compute circumference, ” &

“A to compute area: ”);

TEXT_IO.GET(taskToDo);

END getInput;

newRadius : FLOAT; -- radius of a pool - given

taskToDo : CHARACTER; -- holds user choice to

-- compute circumference

-- or area

more : CHARACTER; -- controls loop for

-- processing more pools

swimmingPool : CIRCLE; -- instance of type circle

BEGIN

TEXT_IO.PUT(“Do you want to process a pool? (Y or N): ”);

TEXT_IO.GET(more);

while more = ‘Y’ -- more circles to process

loop

getInput(newRadius, taskToDo);

setRadius(swimmingPool, newRadius);

if taskToDo = ‘C’ -- compute circumference

then

TEXT_IO.PUT(“The circumference for a pool ” &

“of radius ”);

FLO_IO.PUT(getRadius(swimmingPool), 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(doCircumference(swimmingPool), 3, 2, 0);

TEXT_IO.NEW_LINE;

An Object-Oriented SportsWorld
Program (continued)

FIGURE 30

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 58

primitive operations, the procedure setRadius and the functions getRadius,
doCircumference, and doArea. Each of these primitive operations can be recog-
nized as being related to the CIRCLE type by the fact that each has a parame-
ter of type CIRCLE.

The question is, how does the main program code use the services of the
CIRCLE type? An object (an instance of the type) has to be declared as being
of type CIRCLE. The statement

swimmingPool : CIRCLE; -- instance of type

-- circle

instantiates an object from the CIRCLE type and calls it swimmingPool. Now,
the main program code can ask the swimmingPool object to invoke methods
from its class. Consider the statements

TEXT_IO.PUT(“The circumference for a pool ” &

“of radius ”);

FLO_IO.PUT(getRadius(swimmingPool), 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(doCircumference(swimmingPool), 3, 2, 0);

TEXT_IO.NEW_LINE;

These statements ask the swimmingPool object first to invoke the getRadius
function. This function returns the value of the swimmingPool radius, which is
then written out. Later the swimmingPool object invokes the doCircumference
function. This function returns the value of the circumference of the
swimmingPool object, which also is then written out. Note that, unlike the
functions of Figure 25, the doCircumference and doArea functions in Figure 30
have no parameter for the value of the radius; as primitive operations of this
class, they know at all times the current value of radius for the object that
invoked them, and it does not have to be passed to them as an argument.

596 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

else -- compute area

TEXT_IO.PUT(“The area for a pool ” &

“of radius ”);

FLO_IO.PUT(getRadius(swimmingPool), 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(doArea(swimmingPool), 3, 2, 0);

TEXT_IO.NEW_LINE;

end if;

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Do you want to process more pools” &

“ (Y or N): ”);

TEXT_IO.GET(more);

end loop; -- end of while loop

-- finish up

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Program will now terminate.”);

END SportsWorld;

An Object-Oriented SportsWorld
Program (continued)

FIGURE 30

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 59

However, the invoking object (swimmingPool) is passed to each of the prim-
itive operations.

These primitive operations are all “public” by default. Public operations
can be used anywhere, including within the main program code, and indeed in
any Ada program that wants to make use of this type. Think of the CIRCLE
type as handing out a business card that advertises these services: Hey, you
want a CIRCLE object that can find its own area? Find its own circumference?
Set the value of its own radius? I’m your type!

The main program code, as before, handles all of the user interaction and
now makes use of the CIRCLE type. In addition, it uses the getInput procedure,
which is not a primitive operation of the CIRCLE type, it’s the same “regular”
procedure we’ve seen before.

Looking at the code for the primitive operations in Figure 30, we see that the
setRadius procedure uses an assignment statement to change the value of radius
to whatever quantity is passed to the parameter value. The getRadius function
body is a single return statement. The doCircumference and doArea functions
again consist of single statements that compute and return the proper value.

Among the variable declarations in procedure SportsWorld, there is no dec-
laration for a variable called radius. There is a declaration for newRadius, and
newRadius receives the value entered by the user in getInput for the radius of
the circle. Therefore, isn’t newRadius serving the same purpose as radius did in
the old program? No—this is rather subtle, so pay attention: While newRadius
holds the number the user wants for the circle radius, it is not itself the radius
of swimmingPool. The radius of swimmingPool is the single property radius con-
ferred on the swimmingPool object because it is an instance of the CIRCLE type.
Only primitive operations of the class can change the properties of an object of
that class. The CIRCLE type provides the setRadius procedure for this purpose.
The main program code must ask the swimmingPool object to invoke setRadius
to set the value of its radius equal to the value contained in newRadius. The
newRadius argument corresponds to the value parameter in the setRadius proce-
dure, which then gets assigned to the radius property.

setRadius(swimmingPool, newRadius);

PROCEDURE setRadius(obj: in out CIRCLE; value : in

FLOAT) IS

-- sets radius equal to value

BEGIN

obj.radius := value;

END setRadius;

The setRadius primitive operation is a procedure because it contains no return
statement. The invocation of this procedure is a complete Ada statement.
Notice, however, that the obj parameter is an in out parameter because a prop-
erty (the radius) of the corresponding argument (swimmingPool) is changed
within this procedure.

Finally, the output statements in the main program code that print the
values of the circumference and area also have swimmingPool invoke the
getRadius function to return its current radius value, so it can be printed as
part of the output. We could have used the variable newRadius here instead.
However, newRadius is what we THINK has been used in the computation,
whereas radius is what has REALLY been used.

60 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 60

6.3 One More Example

The object-oriented version of our SportsWorld program illustrates encapsula-
tion. All data and calculations concerning circles are encapsulated in the
Circle class. Let’s look at one final example that illustrates the other two
watchwords of OOP—polymorphism and inheritance.

In Figure 31 the domain of interest is that of geometric shapes. Four dif-
ferent types (classes) are given: CIRCLE, RECTANGLE, SQUARE, and SQUARE2.
Each type declares its own properties and provides, in the form of procedures
or functions, the services that an object of that type can perform. A CIRCLE
object has a radius property, whereas a RECTANGLE object has a width prop-
erty and a height property. Any CIRCLE object can set the value of its radius
and can compute its area. A RECTANGLE object can set the value of its width
and height and can compute its area. Both SQUARE and SQUARE2 objects have
a side property that they can set, but they compute their areas in very differ-
ent ways, as we will explain shortly.

The main program code creates objects from the various types. Then, for
each object, the main program code requests the object to set its dimensions,
using the values given, and to compute its area as part of a series of output
statements giving information about the object. For example, the statement

setRadius(joe, 23.5);

instructs the circle named joe to invoke the setRadius procedure of joe’s type,
thereby setting joe’s radius to 23.5. Figure 32 shows the output (wrapped to
fit on the page) after the program in Figure 31 is run.

Here we see polymorphism at work, because there are lots of doArea func-
tions; when the program executes, the correct function is used, on the basis of
the type to which the object invoking the function belongs. After all, com-
puting the area of a circle is quite different from computing the area of a
rectangle.

616 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

-- This program demonstrates the object-oriented

-- concepts of polymorphism and inheritance

-- Written by M. Phelps, 10/23/16

WITH TEXT_IO;

PROCEDURE Shapes IS

PACKAGE FLO_IO IS NEW TEXT_IO.FLOAT_IO(FLOAT);

pi : constant := 3.1416; -- value of pi

---------------- type for circle -------

TYPE CIRCLE IS

tagged record

radius: FLOAT;

end record;

PROCEDURE setRadius(obj: in out CIRCLE; value : in FLOAT) IS

-- sets radius equal to value

An Ada Program with
Polymorphism and Inheritance

FIGURE 31

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 61

62 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

BEGIN

obj.radius := value;

END setRadius;

FUNCTION getRadius(obj: in CIRCLE) RETURN FLOAT IS

-- returns the value of radius

BEGIN

return obj.radius;

END getRadius;

FUNCTION doArea(obj: in CIRCLE) RETURN FLOAT IS

-- computes and returns the area of a circle

BEGIN

return pi * obj.radius ** 2;

END doArea;

---------------- type for rectangle ------

TYPE RECTANGLE IS

tagged record

width : FLOAT;

height : FLOAT;

end record;

PROCEDURE setWidth(obj : in out RECTANGLE; value : in FLOAT) IS

-- sets width of the rectangle equal to value

BEGIN

obj.width := value;

END setWidth;

PROCEDURE setHeight(obj : in out RECTANGLE; value : in FLOAT) IS

-- sets height of the rectangle equal to value

BEGIN

obj.height := value;

END setHeight;

FUNCTION getWidth(obj: in RECTANGLE) RETURN FLOAT IS

-- returns the value of width

BEGIN

return obj.width;

END getWidth;

FUNCTION getHeight(obj: in RECTANGLE) RETURN FLOAT IS

-- returns the value of height

BEGIN

return obj.height;

END getHeight;

FUNCTION doArea(obj : in RECTANGLE) RETURN FLOAT IS

-- computes and returns the area of the rectangle

BEGIN

return obj.width * obj.height;

END doArea;

An Ada Program with
Polymorphism and Inheritance
(continued)

FIGURE 31

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 62

636 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

--------------- type for square -----

TYPE SQUARE IS

tagged record

side : FLOAT;

end record;

PROCEDURE setSide(obj : in out SQUARE; value : in FLOAT) IS

-- sets side of the square equal to value

BEGIN

obj.side := value;

END setSide;

FUNCTION getSide(obj: in SQUARE) RETURN FLOAT IS

-- returns the value of side

BEGIN

return obj.side;

END getSide;

FUNCTION doArea(obj : in SQUARE) RETURN FLOAT IS

-- computes and returns the area of the square

BEGIN

return obj.side * obj.side;

END doArea;

---------------- type for square2 -----

TYPE SQUARE2 IS

new RECTANGLE with record

side : FLOAT;

end record;

PROCEDURE setSide(obj : in out SQUARE2; value : in FLOAT) IS

-- sets side of the square equal to value

-- also sets inherited width and height properties

BEGIN

obj.side := value;

obj.width := value;

obj.height := value;

END setSide;

FUNCTION getSide(obj: in SQUARE2) RETURN FLOAT IS

-- returns the value of side

BEGIN

return obj.side;

END getSide;

FUNCTION doArea(obj : in SQUARE2) RETURN FLOAT IS

-- computes and returns the area of the square

BEGIN

return doArea(RECTANGLE(obj));

END doArea;

------------------- instances ----

joe : CIRCLE; -- instance of type circle

luis : RECTANGLE; -- instance of type rectangle

anastasia : SQUARE; -- instance of type square

tyler : SQUARE2; -- instance of type square2,

special rectangle

An Ada Program with
Polymorphism and Inheritance
(continued)

FIGURE 31

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 63

The algorithms themselves are straightforward; they employ the usual for-
mulas to compute the area of a circle, rectangle, and square. These functions
can use the properties of the objects that invoke them without having the val-
ues of those properties passed as arguments.

SQUARE is a stand-alone type with a side property and a doArea function.
The SQUARE2 type, however, recognizes the fact that squares are special kinds of
rectangles. The SQUARE2 type is a subtype of the RECTANGLE class, as is

64 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

BEGIN

setRadius(joe, 23.5);

TEXT_IO.PUT(“The area of a circle with radius ”);

FLO_IO.PUT(getRadius(joe), 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(doArea(joe), 3, 2, 0);

TEXT_IO.NEW_LINE;

setWidth(luis, 12.4);

setHeight(luis, 18.1);

TEXT_IO.PUT(“The area of a rectangle with ” &

“dimensions ”);

FLO_IO.PUT(getWidth(luis), 3, 2, 0);

TEXT_IO.PUT(“ and ”);

FLO_IO.PUT(getHeight(luis), 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(doArea(luis), 3, 2, 0);

TEXT_IO.NEW_LINE;

setSide(anastasia, 3.0);

TEXT_IO.PUT(“The area of a square with side ”);

FLO_IO.PUT(getSide(anastasia), 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(doArea(anastasia), 3, 2, 0);

TEXT_IO.NEW_LINE;

setSide(tyler, 4.2);

TEXT_IO.PUT(“The area of a square with side ”);

FLO_IO.PUT(getSide(tyler), 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(doArea(tyler), 3, 2, 0);

TEXT_IO.NEW_LINE;

-- finish up

TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“Program will now terminate.”);

END Shapes;

An Ada Program with
Polymorphism and Inheritance
(continued)

FIGURE 31

The area of a circle with radius 23.50 is 1734.95

The area of a rectangle with dimensions 12.40 and 18.10

is 224.44

The area of a square with side 3.00 is 9.00

The area of a square with side 4.20 is 17.64

Output from the Program of
Figure 31

FIGURE 32

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 64

indicated by the reference to RECTANGLE in the type declaration for SQUARE2. It
inherits the width and height properties from the “parent” RECTANGLE type.
SQUARE2 also has an additional side property of its own, which makes sense for
a square but not for an arbitrary rectangle. The setSide procedure assigns a value
to the side property, and also assigns the same value to the width and height
properties that a SQUARE2 object inherits from the parent type. To compute the
area, the doArea function simply turns the computation over to the doArea
function inherited from the RECTANGLE type. This is invoked in the statement

return doArea(RECTANGLE(obj));

where the obj has been type cast from a SQUARE2 to a RECTANGLE. This is pos-
sible because a SQUARE2 object really is a form of rectangle, and this type cast
tells the system that the invoking object is a RECTANGLE object, so the doArea
function from the RECTANGLE type is to be used. Here we see inheritance at
work.

Inheritance can be carried through multiple “generations.” We might
redesign the program so that there is one “supertype” that is a general SHAPE
type, of which CIRCLE and RECTANGLE are subtypes, SQUARE2 being a subtype
of RECTANGLE (see Figure 33 for a possible type hierarchy).

6.4 What Have We Gained?

Now that we have some idea of the flavor of object-oriented programming, we
should ask what we gain by this approach. There are two major reasons why
OOP is a popular way to program:

• Software reuse

• A more natural “worldview”

656 Object-Oriented Programming

©2016 Course Technology, a part of Cengage Learning.

SHAPE
type

CIRCLE
type

TRIANGLE
type

RECTANGLE
type

SQUARE2
type

A Hierarchy of Geometric Types

FIGURE 33

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 65

SOFTWARE REUSE. Manufacturing productivity took a great leap forward
when Henry Ford invented the assembly line. Automobiles could be assembled
using identical parts so that each car did not have to be treated as a unique
creation. Computer scientists are striving to make software development more
of an assembly-line operation and less of a handcrafted, start-over-each-time
process. Object-oriented programming is a step toward this goal: A useful type
that has been implemented and tested becomes a component available for use
in future software development. Anyone who wants to write an application
program involving circles, for example, can use the already written, tried, and
tested CIRCLE type. As the “parts list” (the type library) grows, it becomes
easier and easier to find a “part” that fits, and less and less time has to be
devoted to writing original code. If the type doesn’t quite fit, perhaps it can
be modified to fit by creating a subtype; this is still less work than starting
from scratch. Software reuse implies more than just faster code generation. It
also means improvements in reliability; these types have already been tested,
and if properly used, they will work correctly. And it means improvements in
maintainability. Thanks to the encapsulation property of object-oriented pro-
gramming, changes can be made in type implementations without affecting
other code, although such change requires retesting the types.

A MORE NATURAL “WORLDVIEW.” The traditional view of programming is
procedure-oriented, with a focus on tasks, subtasks, and algorithms. But
wait—didn’t we talk about subtasks in OOP? Haven’t we said that computer
science is all about algorithms? Does OOP abandon these ideas? Not at all. It is
more a question of when these ideas come into play. Object-oriented program-
ming recognizes that in the “real world,” tasks are done by entities (objects).
Object-oriented program design begins by identifying those objects that are
important in the domain of the program because their actions contribute to
the mix of activities present in the banking enterprise, the medical office, or
wherever. Then it is determined what data should be associated with each
object and what subtasks the object contributes to this mix. Finally, an algo-
rithm to carry out each subtask must be designed. We saw in the modularized
versions of the SportsWorld program in Figures 24 and 25 how the overall algo-
rithm could be broken down into pieces that are isolated within functions and
procedures. Object-oriented programming repackages those functions and pro-
cedures by encapsulating them within the appropriate type of objects.

Object-oriented programming is an approach that allows the programmer
to come closer to modeling or simulating the world as we see it, rather than to
mimic the sequential actions of the Von Neumann machine. It provides
another buffer between the real world and the machine, another level of
abstraction in which the programmer can create a virtual problem solution
that is ultimately translated into electronic signals on hardware circuitry.

Finally, we should mention that a graphical user interface, with its win-
dows, icons, buttons, and menus, is an example of object-oriented program-
ming at work. A general button class, for example, can have properties of
height, width, location on the screen, text that may appear on the button,
and so forth. Each individual button object has specific values for those prop-
erties. The button class can perform certain services by responding to mes-
sages, which are generated by events (for example, the user clicking the
mouse on a button triggers a “mousedown” event). Each particular button
object individualizes the code to respond to these messages in unique ways.
We will not go into details of how to develop graphical user interfaces in Ada,

66 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 66

but in the next section you will see a bit of the programming mechanics that
can be used to draw the graphics items that make up a visual interface.

677 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

1. What is the output from the following section of code if it is added
to the main program code of the Ada program in Figure 31?

one : SQUARE;

setSide(one,10.0);

TEXT_IO.PUT(“The area of a square with side ”);

FLO_IO.PUT(getSide(one), 3, 2, 0);

TEXT_IO.PUT(“ is ”);

FLO_IO.PUT(doArea(one), 3, 2, 0);

TEXT_IO.NEW_LINE;

2. In the hierarchy of Figure 33, suppose that the Triangle type is able
to perform a doArea function. What two properties should any tri-
angle object have?

PRACTICE PROBLEMS

7 Graphical Programming

The programs that we have looked at so far all produce text output—output
composed of the characters {A . . . Z, a . . . z, 0 . . . 9} along with a few punc-
tuation marks. For the first 30 to 35 years of software development, text was
virtually the only method of displaying results in human-readable form, and in
those early days it was quite common for programs to produce huge stacks of
alphanumeric output. These days an alternative form of output—graphics—
has become much more widely used. With graphics, we are no longer limited to
100 or so printable characters; instead, programmers are free to construct
whatever shapes and images they desire.

The intelligent and well-planned use of graphical output can produce some
phenomenal improvements in software. We discussed this issue in Chapter 6,
where we described the move away from the text-oriented operating systems of
the 1970s and 1980s, such as MS-DOS and VMS, to operating systems with more
powerful and user-friendly graphical user interfaces (GUIs), such as Windows 7,
Windows 8, and Mac OS X. Instead of requiring users to learn dozens of complex
text-oriented commands for such things as copying, editing, deleting, moving,
and printing files, GUIs can present users with simple and easy-to-understand
visual metaphors for these operations. In the first image on the next page, the
operating system presents the user with icons for printing, deleting, or copying a
file. In the second image on the next page, dragging a file to the printer icon
prints the file.

Not only does graphics make it easier to manage the tasks of the operating
system, it can help us visualize and make sense of massive amounts of output pro-
duced by programs that model complex physical, social, and mathematical sys-
tems. (We discuss modeling and visualization in Chapter 13 of the text.) Finally,
there are many applications of computers that would simply be impossible

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 67

without the ability to display output visually. Applications such as virtual reality,
computer-aided design/computer-aided manufacturing (CAD/CAM), games and
entertainment, medical imaging, and computer mapping would not be anywhere
near as important as they are without the enormous improvements that have
occurred in the areas of graphics and visualization.

So, we know that graphical programming is important. The question is:
What features must be added to a programming language like Ada to produce
graphical output?

7.1 Graphics Hardware

Modern computer terminals use what is called a bitmapped display, in which
the screen is made up of thousands of individual picture elements, or pixels,
laid out in a two-dimensional grid. These are the same pixels used in visual
images, as discussed in Chapter 4. In fact, the display is simply one large visual
image. The number of pixels on the screen varies from system to system; typical
values range from 800 � 600 up to 1560 � 1280. Terminals with a high density
of pixels are called high-resolution terminals. The higher the resolution—that
is, the more pixels available in a given amount of space—the sharper the visual
image because each individual pixel is smaller. However, if the screen size itself
is small, then a high-resolution image can be too tiny to read. A 30” wide-screen
monitor might support a resolution of 2560 � 1600, but that would not be suit-
able for a laptop screen. In Chapter 4 you learned that a color display requires

68 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 68

24 bits per pixel, with 8 bits used to represent the value of each of the three col-
ors red, green, and blue. The memory that stores the actual screen image is
called a frame buffer. A high-resolution color display might need a frame
buffer with (1560 � 1280) pixels � 24 bits/pixel � 47,923,000 bits, or about 6
MB, of memory for a single image. (One of the problems with graphics is that it
requires many times the amount of memory needed for storing text.)

The individual pixels in the display are addressed using a two-dimensional
coordinate grid system, the pixel in the upper-left corner being (0, 0). The
overall pixel-numbering system is summarized in Figure 34. The specific values
for maxX and maxY in Figure 34 are, as mentioned earlier, system-dependent.
(Note that this coordinate system is not the usual mathematical one. Here, the
origin is in the upper-left corner, and y values are measured downward.)

The terminal hardware displays on the screen the frame buffer value of
every individual pixel. For example, if the frame buffer value on a color moni-
tor for position (24, 47) is RGB (0, 0, 0), the hardware sets the color of the
pixel located at column 24, row 47 to black, as shown in Figure 35. The oper-
ation diagrammed in Figure 35 must be repeated for all of the 500,000 to 2
million pixels on the screen. However, the setting of a pixel is not permanent;
on the contrary, its color and intensity fade quickly. Therefore, each pixel
must be “repainted” often enough so that our eyes do not detect any “flicker,”
or change in intensity. This requires the screen to be completely updated, or

697 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

Pixel-Numbering System in a
Bitmapped Display

FIGURE 34

(0, maxY) (1, maxY) (2, maxY) (maxX, maxY)

(0, 0) (1, 0) (2, 0) (maxX, 0)

(0, 1) (1, 1) (2, 1) (maxX, 1)

(0, 2) (1, 2) (2, 2) (maxX, 2)

24

47

Frame buffer

(0,0,0)

24

47

Screen

HardwareDisplay of Information on the
Terminal

FIGURE 35

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 69

refreshed, 30–50 times per second. By setting various sequences of pixels to
different colors, the user can have the screen display any desired shape or
image. This is the fundamental way in which graphical output is achieved.

7.2 Graphics Software

To control the setting and clearing of pixels, programmers use a collection
of procedures that are part of a special software package called a graphics
library. Virtually all modern programming languages, including Ada, have
a graphics library that is available for creating different shapes and
images. Typically, an “industrial strength” graphics library includes hun-
dreds of procedures for everything from drawing simple geometric shapes
like lines and circles, to creating and selecting colors, to more complex
operations such as displaying scrolling windows, pull-down menus, and
buttons. We restrict our discussion to a modest set of procedures. Although
the set is unrealistically small, it will still give you a good idea of what
visual programming is like, and enable you to produce some interesting,
nontrivial images on the screen. Again, the graphics library used in the
examples that follow is AdaGraph, available for free download from
http://www.filewatcher.com/m/adagraph.zip.103876-0.html.

To employ the AdaGraph library, all that is needed is a with (and option-
ally a use) clause to make the main program code aware that graphics
commands are to be used, for example:

WITH AdaGraph;

USE AdaGraph;

Recall, including the use clause just eliminates the need for the prefix qualifi-
cation AdaGraph for references to items in the AdaGraph library. As in the pre-
vious examples, the use clause will not be included, so that the exact details
of what comes from which package will be obvious.

Here is the program code to open and close a window.

-- This program demonstrates Ada

-- graphics using the AdaGraph library

WITH TEXT_IO; -- Ada I/O package

WITH AdaGraph; -- Ada graphics package

PROCEDURE Graphics IS

-- Wait for spacebar to be pressed in the

-- command window

PROCEDURE WaitForKeypress (message : in STRING) IS

C : CHARACTER := ‘X’;

BEGIN

TEXT_IO.PUT(“Press <SPACEBAR> to ” & message

& “: ”);

while C /= ‘ ’

loop

70 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 70

TEXT_IO.Get_Immediate (C);

end loop;

TEXT_IO.New_Line;

END WaitForKeypress;

-- horizontal size

displayWidth : CONSTANT INTEGER := 500;

-- vertical size

displayHeight : CONSTANT INTEGER := 300;

maxX : INTEGER; -- maximum display coordinate

maxY : INTEGER;

maxCharX : INTEGER; -- maximum character size

maxCharY : INTEGER;

BEGIN

WaitForKeypress(“open a 500x300 graphic output " &

"before window.”);

AdaGraph.Create_Sized_Graph_Window

(displayWidth, displayHeight, maxX, maxY,

maxCharX, maxCharY);

AdaGraph.Set_Window_Title(“AdaGraph " &

"graphics program”);

WaitForKeypress(“close the window.”);

AdaGraph.Destroy_Graph_Window;

END Graphics;

The screen display that follows shows the details of compilation, binding, and
execution of the Graphics package body.

717 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 71

Notice that the Command window, where the commands to the Ada
compiler are entered, and the graphics display window, where the graphics
will be drawn, are separate.

In the Command window, the first command compiles the AdaGraph
package. The second command compiles the Graphics package that we just wrote.
The third command carries out the binding between the packages. The fourth
command links the results of the compilation together to produce an executable
(exe) file. Then the program begins to execute the main program code.

BEGIN

WaitForKeypress(“open a 500x300 graphic output ” &

“before window.”);

AdaGraph.Create_Sized_Graph_Window

(displayWidth, displayHeight, maxX, maxY,

maxCharX, maxCharY);

AdaGraph.Set_Window_Title(“AdaGraph " &

"graphics program”);

WaitForKeypress(“close the window.”);

AdaGraph.Destroy_Graph_Window;

END Graphics;

The first line of output from the executing program is a prompt to press
the Spacebar (WaitForKeypress). When the Spacebar is pressed, the graph-
ics window is created and displayed by a call to an AdaGraph library
procedure (Create_Sized_Graph_Window). The window is then given a title
(Set_Window_Title). Then the Command window waits for another press of the
Spacebar (WaitForKeypress) to close the window (Destroy_Graph_Window).

The next task is to see how AdaGraph procedures can be used to draw on
the display window.

The code to draw a line from point (20,20) to point (100,100) is shown
next. The added code is in bold.

BEGIN

WaitForKeypress(“open a 500x300 graphic output " &

“before window.”);

AdaGraph.Create_Sized_Graph_Window

(displayWidth, displayHeight, maxX, maxY,

maxCharX, maxCharY);

AdaGraph.Set_Window_Title(“AdaGraph " &

"graphics program”);

AdaGraph.Clear_Window(AdaGraph.White);
AdaGraph.Draw_Line(20, 20, 100, 100,

AdaGraph.Black);

WaitForKeypress(“close the window.”);

AdaGraph.Destroy_Graph_Window;

END Graphics

72 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 72

The first added line changes the background color of the display to white. The
second draws the line. The result of executing the program containing this
code is:

737 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

The parameter definitions for Draw_Line are

Draw_Line (x1, y1, x2, y2, Color)

where (x1, y1) are the coordinates (in pixels) of the start of the line, and (x2, y2)
are the coordinates of the end of the line. Color is something new to our discus-
sion of Ada. Color is an enumeration type; that is, the colors supported by
AdaGraph form a list (an enumeration) of the items (colors) that can be used.
Here is the code from the AdaGraph specification that sets up the enumeration:

type Color_Type is (Black, Blue, Green, Cyan,

Red, Magenta, Brown,

Light_Gray, Dark_Gray,

Light_Blue, Light_Green,

Light_Cyan, Light_Red,

Light_Magenta, Yellow, White);

The code to draw a rectangle touching the four points (25, 60), (75, 60),
(25, 100), and (75, 100) is:

AdaGraph.Draw_Box (25, 60, 75, 100,

AdaGraph.Black,

AdaGraph.No_Fill);

Note that the parameters for Draw_Box are

Draw_Box (x1, y1, x2, y2, Color, Filled)

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 73

where the (x, y) pairs are the opposite corners of the rectangle. Color is the
color of the line and the fill color. Filled is another enumeration type with the
values No_Fill (display on the top) and Fill (display on the bottom).

74 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

In AdaGraph, the Draw_Circle procedure is used to draw a circle. Here is
the code and, on the next page, the result of drawing a circle with radius 75
pixels centered at the point (100, 150):

AdaGraph.Draw_Circle (100, 150, 75,

AdaGraph.Black,

AdaGraph.No_Fill);

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 74

The parameters are:

Draw_Circle (x, y, Radius, Color, Filled);

where (x, y) are the coordinates of the center of the circle, and Radius is the
radius of the circle. Color and Filled are the same as for the rectangle. An error
will occur if the figure being drawn does not fit completely inside the graph-
ics window.

How does AdaGraph provide for text annotations on the screen? There is a
procedure named Display_Text that will do the job. The parameter list is

Display_Text (x, y, string, Color)

The string is the string to be output beginning at (x, y). Color determines the
color of the letters.

Here is an example with the text “Stop” drawn inside of a circle.

757 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 75

The code to produce this image is

AdaGraph.Draw_Circle (180, 180, 20,

AdaGraph.Black,

AdaGraph.No_Fill);

AdaGraph.Display_Text (165, 172, “Stop”,

AdaGraph.Red);

In summary, we have the following graphics procedures at our disposal.

Draw_Line (x1, y1, x2, y2, Color)
Draw_Box (x1, y1, x2, y2, Color, Filled)
Draw_Circle (x, y, Radius, Color, Filled)
Display_Text (x, y, string, Color)

Now that a display window and graphics are available, we seem close to pro-
ducing the elements of a typical GUI. Can we draw a button that acts like a
button on a real GUI form—that is, can we write code to sense a mouse click
on that button and respond with some action? In particular, we will sense the
left mouse button up event. (Looking for the mouse up event gives users a
way out if they press the mouse button and decide they don’t want to click:
namely, they can move the mouse off the button and then release the mouse
button.) Here is the full code for the Ada program.

-- This program demonstrates capture of a mouse

-- click using the AdaGraph library

WITH TEXT_IO; -- Ada I/O package

WITH AdaGraph; -- Ada graphics package

PROCEDURE Graphics IS

PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

PROCEDURE WaitForKeypress (message : in STRING) IS

-- Wait for spacebar to be pressed in the

-- command window

C : CHARACTER := ‘X’;

BEGIN

TEXT_IO.PUT(“Press <SPACEBAR> to ” & message

& “: ”);

while C /= ‘ ’

loop

TEXT_IO.Get_Immediate(C);

end loop;

TEXT_IO.New_Line;

END WaitForKeypress;

-- horizontal size

displayWidth : CONSTANT INTEGER := 500;

-- vertical size

displayHeight : CONSTANT INTEGER := 300;

76 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 76

maxX : INTEGER; -- maximum display coordinate

maxY : INTEGER;

maxCharX : INTEGER; -- maximum character size

maxCharY : INTEGER;

Mouse : AdaGraph.Mouse_Type; -- mouse information
x : INTEGER := 0;
y : INTEGER := 0;

BEGIN

WaitForKeypress(“open a 500x300 graphic output ” &

“before window.”);

AdaGraph.Create_Sized_Graph_Window

(displayWidth, displayHeight, maxX, maxY,

maxCharX, maxCharY);

AdaGraph.Set_Window_Title(“AdaGraph ” &

“graphics program”);

AdaGraph.Clear_Window(AdaGraph.White);

AdaGraph.Draw_Box (25, 60, 65, 110,
AdaGraph.Black,
AdaGraph.No_Fill);

AdaGraph.Display_Text (30, 75, “Stop”,
AdaGraph.Red);

while not AdaGraph.Key_Hit loop
if AdaGraph.Mouse_Event
then

Mouse := AdaGraph.Get_Mouse;

case Mouse.Event is

when AdaGraph.None => null;

when AdaGraph.Moved => X :=
Mouse.X_Pos; Y := Mouse.Y_Pos;

when AdaGraph.Right_Up => null;

when AdaGraph.Left_Down => null;

when AdaGraph.Right_Down => null;

when AdaGraph.Left_Up =>
TEXT_IO.NEW_LINE;

TEXT_IO.PUT(“ x=”); INT_IO.PUT(x);

TEXT_IO.PUT(“ y=”); INT_IO.PUT(y);

AdaGraph.Display_Text (10, 10, “ Inside ”,

AdaGraph.White);

AdaGraph.Display_Text (10, 10,

“ Outside ”, AdaGraph.White);

if (x >= 25) and (x <= 65) and
(y >= 60) and (y <= 110)

then

TEXT_IO.PUT(“ Inside”);

AdaGraph.Display_Text (10, 10,

“ Inside ”, AdaGraph.Green);

else

TEXT_IO.PUT(“ Outside”);

777 Graphical Programming

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 77

AdaGraph.Display_Text (10, 10,

“ Outside ”, AdaGraph.Red);

end if;

end case;

end if;

end loop;
AdaGraph.Destroy_Graph_Window;

END Graphics;

Wow! The lines in bold are the keys to the example; the other lines are needed
to make the example work.

First there are some declarations to gain access to the mouse properties
and store them for use in the decision process. The next set of bold lines
should be familiar; they draw the button and caption (rectangle and text).

The while statement forms a continuous looping process looking for one of
two things: a keystroke (to stop the program) or a mouse event (left button
up). The while condition looks for the keystroke (AdaGraph.Key_Hit). If one
occurs, the loop ends, and the window is closed. The if condition looks for a
mouse event (AdaGraph.Mouse_Event). If one occurs, the various options for a
mouse event are examined using a case statement. The way the case statement
works is that it looks at the event options by checking a set of when clauses.
There are only two of the event choices that are of interest here: the event
that the mouse moves (then save the x, y position of the mouse pointer), and
the event that the left mouse button has come up (then do the testing to see
if the mouse pointer is in the rectangle). The bold if statement does the
checking to see if the (x, y) position of the mouse pointer (at the time of the
click) is within the rectangle. Depending on the results of this test, “Inside”
or “Outside” is displayed both on the console and on the window. The two
Display_Text statements with Color set to white are needed to “erase” the
previous word from the window before drawing the new word.

The following display in the Command window shows the results of a series
of mouse clicks; the final configuration is shown in the graphics window.

78 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

Of course, a real GUI interface would produce much more sophisticated
responses to user mouse clicks, but this is the general idea of how event-
driven programming works.

This brief introduction to graphical programming allows you to produce
some interesting images and, even more important, gives you an appreciation
for how visually oriented software is developed.

C8814_chapter_ada.qxd 1/17/15 5:27 PM Page 78

8 Conclusion

In this module we looked at one representative high-level programming lan-
guage, Ada. Of course, there is much about this language that has been left
unsaid, but we have seen how the use of a high-level language overcomes
many of the disadvantages of assembly language programming, creating a
more comfortable and useful environment for the programmer. In a high-level
language, the programmer need not manage the storage or movement of data
values in memory. The programmer can think about the problem at a higher
level, can use program instructions that are both more powerful and more nat-
ural language–like, and can write a program that is much more portable
among various hardware platforms. We also saw how modularization, through
the use of functions, procedures, and parameters, allows the program to be
more cleanly structured, and how object-oriented programming allows a more
intuitive view of the problem solution and provides the possibility for reuse of
helpful types. We even had a glimpse of graphical programming.

Ada is not the only high-level language. You might be interested in look-
ing at the other online language modules (Java, Python, C++, and C#). You
will find that the Ada syntax (form of the statements) is quite different from

798 Conclusion

©2016 Course Technology, a part of Cengage Learning.

Write the sequence of commands to draw the following “house” in
the graphics window.

Create the house using four rectangles (for the base of the house,
the door, and the two windows), two line segments (for the roof),
and one circle (for the doorknob). Locate the house anywhere you
want in the graphics window.

PRACTICE PROBLEMS

C8814_chapter_ada.qxd 1/17/15 5:28 PM Page 79

that of these other languages. Ada derives its syntax from Pascal-like lan-
guages where statement blocks are delimited by keywords such as BEGIN ..
END and THEN .. ELSE .. END IF, rather than by “curly brackets” { . . . }, and
functions/procedures can be nested within other functions/procedures. Still
other languages take quite a different approach to problem solving. In Chap-
ter 10 of Invitation to Computer Science, we look at some other languages and
language approaches and also address the question of why there are so many
different programming languages.

80 Programming in Ada

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:28 PM Page 80

1. Write an Ada declaration for one real number quantity to
be called rate.

2. Write an Ada declaration for two integer quantities called
orderOne and orderTwo.

3. Write an Ada declaration for a constant quantity called
evaporationRate, which is to have the value 6.15.

4. An Ada program needs one constant stockTime with a
value of 4, one integer variable inventory, and one real
number variable sales. Write the necessary declarations.

5. You want to write an Ada program to compute the aver-
age of three quiz grades for a single student. Decide what
variables your program needs, and write the necessary
declarations.

6. Given the declaration

list : array(1..10) of INTEGER;

how do you refer to the eighth number in the array?

7. An array declaration such as

table : array(0..4, 0..2) of

INTEGER;

represents a two-dimensional table of values with 5 rows
and 3 columns. Rows and columns are numbered in this
Ada array starting at 0, not at 1. Given this declaration,
how do you refer to the marked cell below?

8. Write Ada statements to prompt for and collect values for
the time in hours and minutes (two integer quantities).

9. Say an Ada program computes two integer quantities
inventoryNumber and numberOrdered. Write the output
statements that print these two quantities along with
appropriate text information.

10. The integer quantities A, B, C, and D currently have the
values 13, 4, 621, and 18, respectively. Write the exact
output generated by the following statements, using b to
denote a blank space.

INT_IO.PUT(A, 5);

INT_IO.PUT(B, 3);

INT_IO.PUT(C, 4);

INT_IO.PUT(D, 2);

11. Write Ada formatting and output statements to generate
the following output, assuming that density is a type
FLOAT variable with the value 63.78.

The current density is 63.8,

to within one decimal place.

12. What is the output after the following sequence of state-
ments is executed? (Assume that the integer variables A
and B have been declared.)

A := 12;

B := 20;

B := B + 1;

A := A + B;

INT_IO.PUT(2 * A);

13. Write Ada code that gets the length and width of a rec-
tangle from the user and computes and writes out the
area. Assume that the variables have all been declared
as type INTEGER.

14. a. In the SportsWorld program of Figure 15, the user must
respond with “C” to choose the circumference task. In
such a situation, it is preferable to accept either
uppercase or lowercase letters. Rewrite the condition
in the program to allow this.

b. In the SportsWorld program, rewrite the condition for
continuation of the program to allow either an upper-
case or a lowercase response.

15. Write Ada code that gets a single character from the user
and writes out a congratulatory message if the character
is a vowel (a, e, i, o, or u), but otherwise writes out a
“You lose, better luck next time” message.

16. Insert the missing line of code so that the following adds
the integers from 1 to 10, inclusive.

value := 0;

top := 10;

score := 1;

while score <= top

loop

value := value + score;

-- missing line
end loop;

TEXT_IO.PUT(“value is: ”);

INT_IO.PUT(value);

Exercises 81

E X E R C I S E S

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:28 PM Page 81

17. What is the output after the following code is executed?

low := 1;

high := 20;

while low <= high

loop

INT_IO.PUT(low);

TEXT_IO.PUT(“ ”);

INT_IO.PUT(high);

TEXT_IO.NEW_LINE;

low := low + 1;

high := high - 1;

end loop;

18. Write Ada code that outputs the even integers from 2
through 30, one per line. Use a while loop.

19. In a while loop, the Boolean condition that tests for loop
continuation is done at the top of the loop, before each
iteration of the loop body. As a consequence, the loop
body might not be executed at all. Our pseudocode lan-
guage of Chapter 2 contains a do-while loop construction
in which a test for loop termination occurs at the bottom
of the loop rather than at the top, so that the loop body
always executes at least once. Ada contains an exit when
statement that tests for a condition and allows an exit
from the loop. The form of the statement is:

loop

S1;

exit when (Boolean condition);

end loop;

where, as usual, S1 can be a compound statement. Write
Ada code to add up a number of nonnegative integers
that the user supplies and to write out the total. Use a
negative value as a sentinel, and assume that the first
value is nonnegative. Use an exit-when statement.

20. Write Ada code that asks for a duration of time in hours
and minutes, and writes out the duration only in
minutes.

21. Write Ada code that asks for the user’s age in years. If the
user is under 35, then quote an insurance rate of $2.23 per
$100 for life insurance; otherwise, quote a rate of $4.32.

22. Write Ada code that reads integer values until a 0 value
is encountered and then writes out the sum of the posi-
tive values read and the sum of the negative values read.

23. Write Ada code that reads in a series of positive integers
and writes out the product of all the integers less than
25 and the sum of all the integers greater than or equal
to 25. Use 0 as a sentinel value.

24. a. Write Ada code that reads in 10 integer quiz grades
and computes the average grade. (Hint: Remember the
peculiarity of integer division.)

b. Write Ada code that asks the user for the number of
quiz grades, reads them in, and computes the average
grade.

25. Write an Ada procedure that receives two integer argu-
ments and writes out their sum and their product.

26. Write an Ada procedure that receives an integer argu-
ment representing the number of DVDs rented so far this
month and a real number argument representing the
sales amount for DVDs sold so far this month. The proce-
dure asks the user for the number of DVDs rented today
and the sales amount for DVDs sold today, and then
returns the updated figures to the main program code.

27. Write an Ada function that receives three integer argu-
ments and returns the maximum of the three values.

28. Write an Ada function that receives miles driven as a
type FLOAT argument and gallons of gas used as a type
INTEGER argument, and returns miles per gallon.

29. Write an Ada program that uses an input procedure to get
the miles driven (type FLOAT) and the gallons of gas used
(type INTEGER), then writes out the miles per gallon,
using the function from Exercise 28.

30. Write an Ada program to balance a checkbook. The pro-
gram needs to get the initial balance, the amounts of
deposits, and the amounts of checks. Allow the user to
process as many transactions as desired; use separate
procedures to handle deposits and checks.

31. Write an Ada program to compute the cost of carpeting
three rooms. Make the carpet cost a constant of $8.95 per
square yard. Use four separate functions/procedures to
collect the dimensions of a room in feet, convert feet into
yards, compute the area, and compute the cost per room.
The main program code should use a loop to process each
of the three rooms, then add the three costs, and write out
the total cost. (Hint: The function to convert feet into
yards must be used twice for each room, with two different
arguments. Hence, it does not make sense to try to give
the parameter the same name as the argument.)

32. a. Write an Ada doPerimeter function for the Rectangle
class of Figure 31.

b. Write Ada code that creates a new Rectangle object
called yuri, then writes out information about this
object and its perimeter using the doPerimeter func-
tion from part (a).

33. Draw a type hierarchy diagram similar to Figure 33 for the
following types: Student, UndergraduateStudent, Gradu-
ateStudent, Sophomore, Senior, PhDStudent.

34. Imagine that you are writing a program using an object-
oriented programming language. Your program will be
used to maintain records for a real estate office. Decide

82 Programming in Ada

E X E R C I S E S

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:28 PM Page 82

on one class in your program and a service that objects
of that class might provide.

35. Determine the resolution of the screen on your computer
(ask your instructor or the local computer center how to
do this). Using this information, determine how many
bytes of memory are required for the frame buffer to
store the following:
a. A black-and-white image (1 bit per pixel)
b. A grayscale image (8 bits per pixel)
c. A color image (24 bits per pixel)

36. Using the Draw_Line commands described in Section 7.2,
draw an isosceles triangle with the following configuration:

37. Discuss what problem the display hardware might
encounter while attempting to execute the following
operations, and explain how this problem could be
solved.

AdaGraph.Draw_Line(1, 1, 4, 5,

AdaGraph.Black);

38. Draw a square with sides 100 pixels in length. Then
inscribe a circle of radius 50 inside the square.

39. Create the following three labeled rectangular buttons in
the output window.

Have the space between the Start and Stop buttons be the
same as the space between the Stop and Pause buttons.

40. Create the following image of a “teeter-totter”:

41. Write a program that inputs the coordinates of three
mouse clicks from the user and then draws a triangle in
the output window using those three points. Here are
some hints. Model the program after the code used to
sense “mouse up” in the example with the Stop button.

In the when selector for AdaGraph.Left_Up consider the
following code

counter := counter + 1;

if counter = 1

then

x1 := X;

y1 := Y;

end if;

There will need to be two more if statements to capture the
x, y values for the second and third clicks. The drawing code
for the triangle will be in the body of the third if statement.

Exercises 83

E X E R C I S E S

©2016 Course Technology, a part of Cengage Learning.

(100, 30)

(50, 100) (150, 100)

Start Stop Pause

C8814_chapter_ada.qxd 1/17/15 5:28 PM Page 83

©2016 Course Technology, a part of Cengage Learning.

C8814_chapter_ada.qxd 1/17/15 5:28 PM Page 84

©2016 Course Technology, a part of Cengage Learning.

85Answers to Practice Problems

1. The first three.
martinBradley (camel case)

C3P_OH (acceptable, although not used in this module)

Amy3 (Pascal case)

3Right (not acceptable, begins with digit)

constant (not acceptable, Ada reserved word)

2. number : INTEGER;
3. taxRate : constant :� 5.5;
4. hits(7)

1. TEXT_IO.PUT(“Enter quantity: ”);
INT_IO.GET(quantity);

2. INT_IO.PUT(height, 6);
TEXT_IO.NEW_LINE;

3. This isgoodbye

1. next : � newNumber;
2. This code will not compile in Ada because of the mixed types in the

assignment statement. It should be written as
average := FLOAT(total/number);

The output (with the default system formatting) will be
5.50000E+01

Note that total/number results in integer division. To get a true average, use
average := FLOAT(total)/FLOAT(number);

1. 30
2. 3

5
7
9
11
13
15
17
19
21

3. Yes
4. 6

ANSWERS TO PRACTICE PROBLEMS

Section 2

Section 3.1

Section 3.2

Section 3.3

C8814_chapter_ada.qxd 1/17/15 5:28 PM Page 85

©2016 Course Technology, a part of Cengage Learning.

5.
if day � night

then

TEXT_IO.PUT(“Equal”);

end if;

1.
--program to read an integer and

--write out its square

WITH TEXT_IO;

PROCEDURE PracticeProblem IS

PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

number, square : INTEGER;

BEGIN

TEXT_IO.PUT(“Enter a number: ”);

INT_IO.GET(number);

square := number ** 2;

TEXT_IO.PUT(“The square is: ”);

INT_IO.PUT(square);

TEXT_IO.NEW_LINE;

END PracticeProblem;

2.
--program to compute cost based on price per item

--and quantity purchased

WITH TEXT_IO;

PROCEDURE PracticeProblem IS

PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

PACKAGE FLO_IO IS NEW TEXT_IO.FLOAT_IO(FLOAT);

quantity : INTEGER;

price, totalCost : FLOAT;

BEGIN

TEXT_IO.PUT(“Enter the price of the item: ”);

FLO_IO.GET(price);

TEXT_IO.PUT(“Enter the quantity purchased: ”);

INT_IO.GET(quantity);

totalCost := price * FLOAT(quantity);

TEXT_IO.PUT(“The total cost is: ”);

FLO_IO.PUT(totalCost, 3, 2, 0);

TEXT_IO.NEW_LINE;

END PracticeProblem;

3.
--program to test a number relative to 5

--and write out the number or its double

WITH TEXT_IO;

86 Programming in Ada

Section 4

C8814_chapter_ada.qxd 1/17/15 5:28 PM Page 86

©2016 Course Technology, a part of Cengage Learning.

PROCEDURE PracticeProblem IS

PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

number : INTEGER;

BEGIN

TEXT_IO.PUT(“Enter a number: ”);

INT_IO.GET(number);

if number < 5

then

TEXT_IO.PUT(“The number is: ”);

INT_IO.PUT(number, 4);

else

TEXT_IO.PUT(“Twice the number is: ”);

INT_IO.PUT(number * 2, 4);

end if;

TEXT_IO.NEW_LINE;

END PracticeProblem;

4.
-- program to collect a number, then write all

-- the values from 1 to that number

WITH TEXT_IO;

PROCEDURE PracticeProblem IS

PACKAGE INT_IO IS NEW TEXT_IO.INTEGER_IO(INTEGER);

number : INTEGER;

i : INTEGER;

BEGIN

TEXT_IO.put(“Enter a positive integer: ”);

INT_IO.GET(number);

i := 1;

while i <= number

loop

INT_IO.PUT(i, 4);

TEXT_IO.NEW_LINE;

i := i + 1;

end loop;

END PracticeProblem;

1. 11
2. The Ada compiler message is:

PracticeProblem.adb:10:04: assignment to “IN” mode parameter not allowed

A change is being made to an item passed (by default) by value. Ada will
not allow the code to compile without adding in out to the parameter
list—see Practice Problem 1 above.

3.
PROCEDURE getInput(one : out INTEGER; two : out

INTEGER) IS

BEGIN

TEXT_IO.PUT(“Input the value for One: ”);

INT_IO.GET(one);

87Answers to Practice Problems

Section 5.3

C8814_chapter_ada.qxd 1/17/15 5:28 PM Page 87

©2016 Course Technology, a part of Cengage Learning.

TEXT_IO.PUT(“Input the value for Two: ”);

INT_IO.GET(two);

END getInput;

4.
a. FUNCTION tax(subTotal : in FLOAT) RETURN FLOAT IS

b. return subTotal * rate;

c. FLO_IO.PUT(tax(subTotal), 3, 2, 0);

1. The area of a square with side 10.00 is 100.00
2. height and base

AdaGraph.Clear_Window (AdaGraph.White);

AdaGraph.Draw_Box (50, 110, 250, 260, AdaGraph.Black,

AdaGraph.No_Fill);

AdaGraph.Draw_Box (60, 120, 100, 160, AdaGraph.Black,

AdaGraph.No_Fill);

AdaGraph.Draw_Box (200, 120, 240, 160, AdaGraph.Black,

AdaGraph.No_Fill);

AdaGraph.Draw_Box (125, 180, 175, 260, AdaGraph.Black,

AdaGraph.No_Fill);

AdaGraph.Draw_Line (50, 110, 150, 10, AdaGraph.Black);

AdaGraph.Draw_Line (250, 110, 150, 10, AdaGraph.Black);

AdaGraph.Draw_Circle (165, 215, 5, AdaGraph.Black,

AdaGraph.No_Fill);

88 Programming in Ada

Section 6.4

Section 7.2

C8814_chapter_ada.qxd 1/17/15 5:28 PM Page 88

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2015-01-17T17:30:47+0530
	Preflight Ticket Signature

